
Transaction & Concurrency control

Transaction is defined as the sequence of server operation that is guaranteed by the server to
be atomic in the presence of multiple clients and servers. Generally, hosts provide resources,
and a transaction manager is responsible for developing and handling the transaction. Like any
other transaction, a distributed transaction should include all four ACID properties (atomicity,
consistency, isolation, durability).

A nested transaction is a transaction that is created inside another transaction. A nested
transaction’s purpose is to support transactions in stored procedures that can be called from a
process already in a transaction or from a process that has no active transaction.

ACID (atomicity, consistency, isolation, and durability)
Atomicity. In a transaction involving two or more discrete pieces of information, either all of the

pieces are committed or none are. This property states that a transaction must be treated as an
atomic unit, that is, either all of its operations are executed or none. There must be no state in a
database where a transaction is left partially completed. States should be defined either before
the execution of the transaction or after the execution/abortion/failure of the transaction.

Consistency. ​A transaction either creates a new and valid state of data, or, if any failure
occurs, returns all data to its state before the transaction was started.

Isolation. ​A transaction in process and not yet committed must remain isolated from any other
transaction.

Durability. Committed data is saved by the system such that, even in the event of a failure and
system restart, the data is available in its correct state.

Concurrency control manages simultaneous access to a resource. It prevents two users from
accessing, editing the same resources at the same time and also serializes transactions for
backup and recovery. The general area of concurrency control provides rules, methods, design
methodologies, and theories to maintain the consistency of components operating concurrently
while interacting, and thus the consistency and correctness of the whole system.

NEED
If transactions are executed serially, i.e., sequentially with no overlap in time, no transaction
concurrency exists. However, if concurrent transactions with interleaving operations are allowed
in an uncontrolled manner, some unexpected, undesirable results may occur, such as:

● The lost update problem: A second transaction writes a second value of a data-item
(datum) on top of a first value written by a first concurrent transaction, and the first value
is lost to other transactions running concurrently which need, by their precedence, to

read the first value. The transactions that have read the wrong value end with incorrect
results.

● The dirty read problem: Transactions read a value written by a transaction that has been
later aborted. This value disappears from the database upon abort, and should not have
been read by any transaction ("dirty read"). The reading transactions end with incorrect
results.

● The incorrect summary problem: While one transaction takes a summary over the values
of all the instances of a repeated data-item, a second transaction updates some
instances of that data-item. The resulting summary does not reflect a correct result for
any (usually needed for correctness) precedence order between the two transactions (if
one is executed before the other), but rather some random result, depending on the
timing of the updates, and whether certain update results have been included in the
summary or not.

In a multiprogramming environment where multiple transactions can be executed
simultaneously, it is highly important to control the concurrency of transactions. We have
concurrency control protocols to ensure atomicity, isolation, and serializability of concurrent
transactions. Concurrency control protocols can be broadly divided into two categories −

● Lock based protocols
● Time stamp based protocols

Lock-based Protocols
Database systems equipped with lock-based protocols use a mechanism by which any
transaction cannot read or write data until it acquires an appropriate lock on it. Locks are of two
kinds −

Binary Locks ​− A lock on a data item can be in two states; it is either locked or unlocked.

Shared/exclusive ​− This type of locking mechanism differentiates the locks based on their
uses. If a lock is acquired on a data item to perform a write operation, it is an exclusive lock.
Allowing more than one transaction to write on the same data item would lead the database into
an inconsistent state. Read locks are shared because no data value is being changed.

There are four types of lock protocols available −

● Simplistic Lock Protocol
Simplistic lock-based protocols allow transactions to obtain a lock on every object before a
'write' operation is performed. Transactions may unlock the data item after completing the ‘write’
operation.

● Pre-claiming Lock Protocol
Pre-claiming protocols evaluate their operations and create a list of data items on which they
need locks. Before initiating an execution, the transaction requests the system for all the locks it
needs beforehand. If all the locks are granted, the transaction executes and releases all the
locks when all its operations are over. If all the locks are not granted, the transaction rolls back
and waits until all the locks are granted.

● Two-Phase Locking 2PL
This locking protocol divides the execution phase of a transaction into three parts. In the first
part, when the transaction starts executing, it seeks permission for the locks it requires. The
second part is where the transaction acquires all the locks. As soon as the transaction releases
its first lock, the third phase starts. In this phase, the transaction cannot demand any new locks;
it only releases the acquired locks.

Two-phase locking has two phases, one is growing, where all the locks are being acquired by
the transaction; and the second phase is shrinking, where the locks held by the transaction are
being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and then
upgrade it to an exclusive lock.

● Strict Two-Phase Locking
The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase, the
transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not release a
lock after using it. Strict-2PL holds all the locks until the commit point and releases all the locks
at a time.

Strict-2PL does not have cascading abort as 2PL does.

Timestamp-based Protocols
The most commonly used concurrency protocol is the timestamp based protocol. This protocol
uses either system time or logical counter as a timestamp.

Lock-based protocols manage the order between the conflicting pairs among transactions at the
time of execution, whereas timestamp-based protocols start working as soon as a transaction is
created.

Every transaction has a timestamp associated with it, and the ordering is determined by the age
of the transaction. A transaction created at 0002 clock time would be older than all other
transactions that come after it. For example, any transaction 'y' entering the system at 0004 is
two seconds younger and the priority would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This lets the system
know when the last ‘read and write’ operation was performed on the data item.

Timestamp Ordering Protocol
The timestamp-ordering protocol ensures serializability among transactions in their conflicting
read and write operations. This is the responsibility of the protocol system that the conflicting
pair of tasks should be executed according to the timestamp values of the transactions.

● The timestamp of transaction Ti is denoted as TS(Ti).
● Read time-stamp of data-item X is denoted by R-timestamp(X).
● Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows −
If a transaction Ti issues a read(X) operation −

1. If TS(Ti) < W-timestamp(X)
Operation rejected.

2. If TS(Ti) >= W-timestamp(X)
Operation executed.

3. All data-item timestamps updated.

If a transaction Ti issues a write(X) operation −

1. If TS(Ti) < R-timestamp(X)
Operation rejected.

2. If TS(Ti) < W-timestamp(X)
Operation rejected and Ti rolled back.

3. Otherwise, operation executed.

Thomas' Write Rule
This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected and Ti is rolled
back.Time-stamp ordering rules can be modified to make the schedule view serializable.Instead
of making Ti rolled back, the 'write' operation itself is ignored.

[source : ​http://people.cs.aau.dk/~bnielsen/ITEV-DistrSys-06/material/itev-transactions.pdf​]

http://people.cs.aau.dk/~bnielsen/ITEV-DistrSys-06/material/itev-transactions.pdf

