
Clocks in Distributed System

Types of Clocks

� Physical Clocks
� Tied to the notion of real time
� Can be used to order events, find time difference between

two events,..

� Logical Clocks
� Derived from the notion of potential cause-effect between

events
� Not tied to the notion of real time
� Can be used to order events
� Different types

� Lamports Logical Clock
� Vector Clocks
� …

Physical Clocks

� Each node has a local clock used by it to timestamp
events at the node

� Local clocks of different nodes may vary
� Need to keep them synchronized (Clock

Synchronization Problem)
� Perfect synchronization not possible because of

inability to estimate network delays exactly
� But still useful, synchronization requirements vary

� Kerberos: requires synchronization of the order of minutes
� GPS: requires synchronization of the order of milliseconds

Clock Synchronization

� Internal Synchronization
� Requires the clocks of the nodes to be

synchronized to within a pre-specified bound
� However, the clock times may not be

synchronized to any external time reference, and
can vary arbitrarily from any such reference

� External Synchronization
� Requires the clocks to be synchronized to within a

pre-specified bound of an external reference clock

How Computer Clocks Work

� Computer clocks are crystals that oscillate at
a certain frequency

� Every H oscillations, the timer chip interrupts
once (clock tick).
� Resolution: time between two interrupts

� The interrupt handler increments a counter
that keeps track of no. of ticks from a
reference in the past (epoch)

� Knowing no. of ticks per second, we can
calculate year, month, day, time of day etc.

Why Clocks Differ: Clock Drift

� Unfortunately, period of crystal oscillation varies
slightly

� If it oscillates faster, more ticks per real second, so
clock runs faster; similar for slower clocks

� For machine p, when correct reference time is t, let
machine clock show time as C = Cp(t)

� Ideally, Cp(t) = t for all p, t
� In practice,

1 – ρ ≤ dC/dt ≤ 1 + ρ
� ρ = max. clock drift rate, usually around 10-5 for

cheap oscillators
� Drift => Skew between clocks (difference in clock

values of two machines)

Resynchronization

� Periodic resynchronization needed to offset skew

� If two clocks are drifting in opposite directions, max.
skew after time t is 2ρt

� If application requires that clock skew < δ, then
resynchronization period

r < δ /(2 ρ)

� Usually ρ and δ are known

Cristian’s Algorithm

� One m/c acts as the time server
� Each m/c sends a message periodically (within

resync. period r) asking for current time
� Time server replies with its time
� Sender sets its clock to the reply
� Problems:

� message delay
� time server time is less than sender’s current time

� Handling message delay: try to estimate the time the
message with the timer server’s time took to each
the sender
� Measure round trip time and halve it
� Make multiple measurements of round trip time,

discard too high values, take average of rest
� Make multiple measurements and take minimum
� Use knowledge of processing time at server if

known to eliminate it from delay estimation
(How?)

� Handling fast clocks
� Do not set clock backwards; slow it down over a

period of time to bring in tune with server’s clock

Berkeley Algorithm
� Centralized as in Cristian’s, but the time server is

active
� Time server asks for time of other m/cs at periodic

intervals
� Other machines reply with their time
� Time server averages the times and sends the

adjustments (difference from local clock) needed to
each machine
� Adjustments may be different for different machines
� Why do we send adjustments, and not the new absolute

clock value?

� M/cs sets their time (advances immediately or slows
down slowly) to the new time

Some Points to Note
� Cristian’s algorithm

� Can also give external synchronization if the time server is
sync’ed with external clock reference

� Requires a special node with a time source
� Prone to failure of the central server

� Berkeley’s algorithm
� Can be used for internal synchronization only
� No separate time source needed, one of the nodes can be

elected as leader and then act as the time server
� Note that the actual time of the central server does not

matter, enough for it to tick at around the same rate as
other clocks to compute average correctly (why?)

� Failures are handled by electing a new leader from the
remaining machines

� What is the max. difference between two clocks
after the synchronization?

� None of them are scalable to large systems
� Load on the central server
� Variance in message delay in large networks

� Works well in LANs with small number of
machines

External Synchronization with
Real Time

� Clocks must be synchronized with real time

� But what is “real time” anyway?

Measurement of time

� Astronomical
� traditionally used
� based on earth’s rotation around its axis and

around the sun
� solar day : interval between two consecutive

transits of the sun
� solar second : 1/86,400 of a solar day
� period of earth’s rotation varies, so solar second

is not stable
� mean solar second : average length of large no of

solar days, then divide by 86,400

� Atomic
� Based on the transitions of Cesium 133 atom
� 1 sec. = time for 9,192,631,770 transitions
� about 50+ labs maintain Cesium clock
� International Atomic Time (TAI) : mean no. of ticks

of the clocks since Jan 1, 1958
� Highly stable
� But slightly off-sync with mean solar day (since

solar day is getting longer)
� A leap second inserted occasionally to bring it in

sync.
� Resulting clock is called UTC – Universal

Coordinated Time

� UTC time is broadcast from different sources around
the world, ex.
� National Institute of Standards & Technology

(NIST) – runs WWV radio station, anyone with a
proper receiver can tune in

� United States Naval Observatory (USNO) –
supplies time to all defense sources

� National Physical Laboratory in UK
� Satellites
� Many others
� Accuracies can vary (< 1 milliseconds to a few

milliseconds)

Synchronizing with UTC Time

� Can use a Cristian-like algorithm with the
time server sync’ed to a UTC source

� Not scalable for internet-scale
synchronization

� Solution: Use a hierarchical approach

NTP : Network Time Protocol

� Protocol for time sync. in the internet
� Hierarchical architecture

� Primary time servers (stratum 1) synchronize to
national time standards via radio, satellite etc.
� Most accurate

� Secondary servers and clients (stratum 2, 3,…)
synchronize to primary servers in a hierarchical
manner (stratum 2 servers sync. with stratum 1,
stratum 3 with stratum 2 etc.)
� Lower stratum means more accurate

� Reliability ensured by synchronizing with redundant
servers

� Communication by multicast (usually within LAN
servers), symmetric (usually within multiple
geographically close servers), or client server (to
higher stratum servers)

� Complex algorithms to combine and filter times
� Sync. possible to within tens of milliseconds for most

machines
� But just a best-effort service, no guarantees
� http://www.ntp.org for more details

Ordering Events

� Given two events in a distributed system (at same or
different nodes), can we say if one happened before
another or not?
� Common requirement, for example, in applying updates to

replicas in a replicated system
� Physical clocks can be used with synchronization in

many cases
� Fails to order when events happen too fast (faster

than the maximum possible skew between two
clocks)

� Are physical clocks needed at all for ordering
events?

Causality and Ordering

� Can what happened in one event at one node
affect what happens in another event in the
same or another node?

� Because if not, ordering them is not important

� Can we capture this notion of causality
between events and build a local clock
around it?
� Use the causality to synchronize the local clocks
� No relation to time synchronization as we have

seen so far, no real notion of time

Lamport’s Ordering

Lamport’s Happened Before relationship:

� For two events x and y, x → y (x happened before y)
if
� x and y are events in the same process and x

occurred before y
� x is a send event of a message m and y is the

corresponding receive event at the destination
process

� x → z and z → y for some event z

� x → y implies x is a potential cause of y
� x can affect y
� Does not mean that x must affect y, just that it can
� But y cannot affect x (i.e. y cannot be a potential cause of

x)

� Causal ordering : potential dependencies
� “Happened Before” relationship causally orders

events
� If x → y, then x causally affects y
� If x → y and y → x, then x and y are concurrent

(x || y)

Lamport’s Logical Clock

� Each process i keeps a clock Ci

� Each event x in i is timestamped C(x), the value of
Ci when x occurred

� Ci is incremented by 1 for each event in i
� In addition, if x is a send of message m from

process i to j, then on receive of m,
Cj = max(Cj + 1, C(x)+1)

� Increment amount can be any positive number not
necessarily 1

Points to Note

� if x → y, then C(x) < C(y)
� Total ordering possible by arbitrarily ordering

concurrent events by process numbers (assuming
process numbers are unique)

� Frequent communication between nodes brings their
logical clocks closer (sync’ed)

� Infrequent communication between nodes may make
their logical clocks very different
� Not a problem, as less communication means less chance of

events at one node affecting events at another node

Using the Clock

� Given two events x and y at processes i and j:
� Order x before y if

� C(x) < C(y), or
� C(x) = C(y) and i < j

� This may order two concurrent events also, but that’s
fine as then the order does not matter for causality
anyway

� If x → y, then y will never be ordered before x

Limitation of Lamport’s Clock

� x → y implies C(x) < C(y) but C(x) < C(y) doesn’t
imply x → y !!

So not a true clock !!

Though not a big limitation in many applications

Solution: Vector Clocks

� Ci is a vector of size n (no. of processes)
� C(a) is similarly a vector of size n
� Update rules:

• Ci[i]++ for every event at process i
• if x is send of message m from i to j with vector

timestamp tm, on receive of m:
Cj[k] = max(Cj[k], tm[k]) for all k

� For events x and y with vector timestamps tx and ty,
� tx = ty iff for all i, tx[i] = ty[i]
� tx ≠ ty iff for some i, tx[i] ≠ ty[i]
� tx ≤ ty iff for all i, tx[i] ≤ ty[i]
� tx < ty iff (tx ≤ ty and tx ≠ ty)
� tx || ty iff (tx < ty and ty < tx)

� x → y if and only if tx < ty

� Events x and y are causally related if and only if tx <
ty or ty < tx, else they are concurrent

Application of Vector Clocks:
Causal Ordering of Messages
� Different message delivery orderings

� Atomic: all message are delivered by all recipient nodes in
the same order (any order possible, but same)

� Causal: For any two messages m1 and m2, if send(m1)→
send(m2), then every recipient of m1 and m2 must deliver
m1 before m2 (but messages not causally related can be
delivered by different nodes in different order)

� FIFO Order: For any two messages m1 and m2 from the
same node, if m1 is sent before m2, then every recipient of
m1 and m2 must deliver m1 before m2 (but messages from
different nodes can be delivered by different nodes in
different order)

� Atomic Causal (Atomic and Causal), Atomic FIFO (Atomic
and FIFO)

� “deliver” – when the message is actually given to the
application for processing, not when received by the
network

Birman-Schiper-Stephenson
Protocol for Causal Order
Broadcast (CBCAST)

� To broadcast m from process i, increment Ci[i], and
timestamp m with VTm = Ci

� When j ≠ i receives m, j delays delivery of m until
� Cj[i] = VTm[i] –1 and
� Cj[k] ≥ VTm[k] for all k ≠ i
� Delayed messaged are queued in j sorted by vector time.

Concurrent messages are sorted by receive time.

� When m is delivered at j, Cj is updated according to
vector clock rule

� First condition says that j has delivered all previous
broadcasts sent by i before delivering m
� This is the set of all messages at i that can causally

precede m

� Second condition says j has delivered at least as
many (may be more) broadcasts sent by k as
delivered by i (k ≠ i, j) when i sent m
� This is the set of all messages at nodes ≠ i that can

causally precede m

� So both conditions true means j has delivered all
messages that causally precedes m

Problem of Vector Clock
� Message size increases since each message

needs to be tagged with the vector
� Size can be reduced in some cases by only

sending values that have changed (
� Can also send only a scaler to keep track of

direct dependencies only, with indirect
dependencies computed when needed
� Tradeoff between message size and time

