
Clocks in Distributed System



Types of Clocks

� Physical Clocks
� Tied to the notion of real time
� Can be used to order events, find time difference between 

two events,..

� Logical Clocks
� Derived from the notion of potential cause-effect between 

events
� Not tied to the notion of real time
� Can be used to order events
� Different types

� Lamports Logical Clock
� Vector Clocks
� …



Physical Clocks

� Each node has a local clock used by it to timestamp 
events at the node

� Local clocks of different nodes may vary
� Need to keep them synchronized (Clock 

Synchronization Problem)
� Perfect synchronization not possible because of 

inability to estimate network delays exactly
� But still useful, synchronization requirements vary

� Kerberos: requires synchronization of the order of minutes
� GPS: requires synchronization of the order of milliseconds



Clock Synchronization

� Internal Synchronization
� Requires the clocks of the nodes to be 

synchronized to within a pre-specified bound
� However, the clock times may not be 

synchronized to any external time reference, and 
can vary arbitrarily from any such reference

� External Synchronization
� Requires the clocks to be synchronized to within a 

pre-specified bound of an external reference clock



How Computer Clocks Work

� Computer clocks are crystals that oscillate at 
a certain frequency

� Every H oscillations, the timer chip interrupts 
once (clock tick). 
� Resolution:  time between two interrupts

� The interrupt handler increments a counter 
that keeps track of no. of ticks from a 
reference in the past (epoch)

� Knowing no. of ticks per second, we can 
calculate year, month, day, time of day etc.



Why Clocks Differ: Clock Drift

� Unfortunately, period of crystal oscillation varies 
slightly 

� If it oscillates faster, more ticks per real second, so 
clock runs faster; similar for slower clocks

� For machine p, when correct reference time is t, let 
machine clock show time as C = Cp(t)

� Ideally, Cp(t) = t for all p, t
� In practice, 

1 – ρ ≤ dC/dt ≤ 1 + ρ
� ρ = max. clock drift rate, usually around 10-5  for 

cheap oscillators
� Drift => Skew between clocks (difference in clock 

values of two machines)



Resynchronization

� Periodic resynchronization needed to offset skew

� If two clocks are drifting in opposite directions, max. 
skew after time t is 2ρt

� If application requires that clock skew < δ, then 
resynchronization period

r < δ /(2 ρ)

� Usually ρ and δ are known



Cristian’s Algorithm

� One m/c acts as the time server
� Each m/c sends a message periodically (within 

resync. period r) asking for current time
� Time server replies with its time
� Sender sets its clock to the reply
� Problems:

� message delay
� time server time is less than sender’s current time



� Handling message delay: try to estimate the time the 
message with the timer server’s time took to each 
the sender
� Measure round trip time and halve it
� Make multiple measurements of round trip time, 

discard too high values, take average of rest
� Make multiple measurements and take minimum
� Use knowledge of processing time at server if 

known to eliminate it from delay estimation 
(How?)

� Handling fast clocks
� Do not set clock backwards; slow it down over a 

period of time to bring in tune with server’s clock



Berkeley Algorithm
� Centralized as in Cristian’s, but the time server is 

active
� Time server asks for time of other m/cs at periodic 

intervals
� Other machines reply with their time
� Time server averages the times and sends the 

adjustments (difference from local clock) needed to 
each machine
� Adjustments may be different for different machines
� Why do we send adjustments, and not the new absolute 

clock value?

� M/cs sets their time (advances immediately or slows 
down slowly) to the new time



Some Points to Note
� Cristian’s algorithm 

� Can also give external synchronization if the time server is 
sync’ed with external clock reference

� Requires a special node with a time source
� Prone to failure of the central server

� Berkeley’s algorithm
� Can be used for internal synchronization only
� No separate time source needed, one of the nodes can be 

elected as leader and then act as the time server
� Note that the actual time of the central server does not 

matter, enough for it to tick at around the same rate as 
other clocks to compute average correctly (why?)

� Failures are handled by electing a new leader from the 
remaining machines 

� What is the max. difference between two clocks 
after the synchronization?



� None of them are scalable to large systems
� Load on the central server
� Variance in message delay in large networks

� Works well in LANs with small number of 
machines



External Synchronization with 
Real Time

� Clocks must be synchronized with real time

� But what is “real time” anyway?



Measurement of time

� Astronomical
� traditionally used
� based on earth’s rotation around its axis and 

around the sun
� solar day : interval between two consecutive 

transits of the sun
� solar second : 1/86,400 of a solar day
� period of earth’s rotation varies, so solar second 

is not stable
� mean solar second : average length of large no of 

solar days, then divide by 86,400



� Atomic
� Based on the transitions of Cesium 133 atom
� 1 sec. = time for 9,192,631,770 transitions
� about 50+ labs maintain Cesium clock
� International Atomic Time (TAI) : mean no. of ticks 

of the clocks since Jan 1, 1958
� Highly stable
� But slightly off-sync with mean solar day (since 

solar day is getting longer)
� A leap second inserted occasionally to bring it in 

sync.
� Resulting clock is called UTC – Universal 

Coordinated Time



� UTC time is broadcast from different sources around 
the world, ex.
� National Institute of Standards & Technology 

(NIST) – runs WWV radio station, anyone with a 
proper receiver can tune in

� United States Naval Observatory (USNO) –
supplies time to all defense sources

� National Physical Laboratory in UK
� Satellites
� Many others
� Accuracies can vary (< 1 milliseconds to a few 

milliseconds)



Synchronizing with UTC Time

� Can use a Cristian-like algorithm with the 
time server sync’ed to a UTC source

� Not scalable for internet-scale 
synchronization

� Solution: Use a hierarchical approach



NTP : Network Time Protocol

� Protocol for time sync. in the internet
� Hierarchical architecture

� Primary time servers (stratum 1) synchronize to 
national time standards via radio, satellite etc. 
� Most accurate

� Secondary servers and clients (stratum 2, 3,…) 
synchronize to primary servers in a hierarchical 
manner (stratum 2 servers sync. with stratum 1, 
stratum 3 with stratum 2 etc.)
� Lower stratum means more accurate



� Reliability ensured by synchronizing with redundant 
servers

� Communication by multicast (usually within LAN 
servers), symmetric (usually within multiple 
geographically close servers), or client server (to 
higher stratum servers)

� Complex algorithms to combine and filter times
� Sync. possible to within tens of milliseconds for most 

machines
� But just a best-effort service, no guarantees
� http://www.ntp.org for more details



Ordering Events

� Given two events in a distributed system (at same or 
different nodes), can we say if one happened before
another or not?
� Common requirement, for example, in applying updates to 

replicas in a replicated system
� Physical clocks can be used with synchronization in 

many cases
� Fails to order when events happen too fast (faster 

than the maximum possible skew between two 
clocks)

� Are physical clocks needed at all for ordering 
events?



Causality and Ordering

� Can what happened in one event at one node 
affect what happens in another event in the 
same or another node?

� Because if not, ordering them is not important

� Can we capture this notion of causality
between events and build a local clock 
around it?
� Use the causality to synchronize the local clocks
� No relation to time synchronization as we have 

seen so far, no real notion of time



Lamport’s Ordering

Lamport’s Happened Before relationship:

� For two events x and y, x → y (x happened before y) 
if
� x and y are events in the same process and x 

occurred before y
� x is a send event of a message m and y is the 

corresponding receive event at the destination 
process

� x → z and z → y for some event z



� x → y implies x is a  potential cause of y
� x can affect y
� Does not mean that x must affect y, just that it can
� But y cannot affect x (i.e. y cannot be a potential cause of 

x)

� Causal ordering : potential dependencies
� “Happened Before” relationship causally orders 

events
� If x → y, then x causally affects y
� If x → y and y → x, then x and y are concurrent 

( x || y)



Lamport’s Logical Clock

� Each process i keeps a clock Ci

� Each event x in i is timestamped C(x), the value of 
Ci when x occurred

� Ci is incremented by 1 for each event in i
� In addition, if x is a send of message m from 

process i to j, then on receive of m, 
Cj = max(Cj + 1, C(x)+1)

� Increment amount can be any positive number not 
necessarily 1



Points to Note

� if x → y, then C(x) < C(y)
� Total ordering possible by arbitrarily ordering 

concurrent events by process numbers (assuming 
process numbers are unique)

� Frequent communication between nodes brings their 
logical clocks closer (sync’ed)

� Infrequent communication between nodes  may make 
their logical clocks very different
� Not  a problem, as less communication means less chance of 

events at one node affecting events at another node



Using the Clock

� Given two events x and y at processes i and j:
� Order x before y if 

� C(x) < C(y), or 
� C(x) = C(y) and i < j

� This may order two concurrent events also, but that’s 
fine as then the order does not matter for causality 
anyway

� If x → y, then y will never be ordered before x



Limitation of Lamport’s Clock

� x → y  implies  C(x) < C(y) but C(x) < C(y) doesn’t 
imply x → y !!

So not a true clock !!

Though not a big limitation in many applications



Solution: Vector Clocks

� Ci is a vector of size n (no. of processes)
� C(a) is similarly a vector of size n
� Update rules:

• Ci[i]++ for every event at process i
• if x is send of message m from i to j with vector 

timestamp tm, on receive of m:
Cj[k] = max(Cj[k], tm[k]) for all k



� For events x and y with vector timestamps tx and ty,
� tx = ty iff for all i, tx[i] = ty[i]
� tx ≠ ty iff for some i, tx[i] ≠ ty[i]
� tx ≤ ty iff for all i, tx[i] ≤ ty[i]
� tx < ty iff (tx ≤ ty and tx ≠ ty)
� tx || ty iff (tx < ty and ty < tx)



� x → y if and only if tx < ty

� Events x and y are causally related if and only if  tx < 
ty or ty < tx, else they are concurrent



Application of Vector Clocks: 
Causal Ordering of Messages
� Different message delivery orderings

� Atomic: all message are delivered by all recipient nodes in 
the same order (any order possible, but same) 

� Causal: For any two messages m1 and m2, if send(m1)→
send(m2), then every recipient of m1 and m2 must deliver 
m1 before m2 (but messages not causally related can be 
delivered by different nodes in different order)

� FIFO Order: For any two messages m1 and m2 from the 
same node, if m1 is sent before m2, then every recipient of 
m1 and m2 must deliver m1 before m2 (but messages from 
different nodes can be delivered by different nodes in 
different order)

� Atomic Causal (Atomic and Causal), Atomic FIFO (Atomic 
and FIFO)

� “deliver” – when the message is actually given to the 
application for processing, not when received by the 
network



Birman-Schiper-Stephenson
Protocol for Causal Order 
Broadcast (CBCAST)

� To broadcast m from process i, increment Ci[i], and 
timestamp m with VTm = Ci

� When j ≠ i receives m, j delays delivery of m until 
� Cj[i] = VTm[i] –1 and
� Cj[k] ≥ VTm[k] for all k ≠ i
� Delayed messaged are queued in j sorted by vector time. 

Concurrent messages are sorted by receive time.

� When m is delivered at j, Cj is updated according to 
vector clock rule



� First condition says that j has delivered all previous 
broadcasts sent by i before delivering m
� This is the set of all messages at i that can causally 

precede m

� Second condition says j has delivered at least as 
many (may be more) broadcasts sent by k as 
delivered by i (k ≠ i, j) when i sent m
� This is the set of all messages at nodes ≠ i that can 

causally precede m

� So both conditions true means  j has delivered all 
messages that causally precedes m



Problem of Vector Clock
� Message size increases since each message 

needs to be tagged with the vector
� Size can be reduced in some cases by only 

sending values that have changed (
� Can also send only a scaler to keep track of 

direct dependencies only, with indirect 
dependencies computed when needed
� Tradeoff between message size and time


