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Chapter 2 :Finite Automata 
2.1 Finite Automata 
Automata are computational devices to solve language recognition problems. Language 
recognition problem is to determine whether a word belongs to a language.   
Automaton = abstract computing device, or “machine” 
An automaton is an abstract model of a digital computer. Finite automata are good models of 
computers with a extremely limited amount of memory. Example of finite automata is Elevator 
problem, control unit of computer etc. 

 
Fig: Finite automata 

An automaton has a mechanism to read input ,which is string over a given alphabet. This input is 
actually written on an input tape /file  ,which can be read by automaton but cannot change it.  
Input file is divided into cells each of which can hold one symbol. Automaton has a control unit 
which is said to be in one of finite number of internal states. The automation can change states in 
a defined way.  

 A state is the condition with respect to structure ,form, constitution and phase. 
 Finite automaton is the simplest acceptor or rejecter  for language specification 

 
Uses of finite automata 
 

 Used in software for verifying all kinds of systems with a finite number of states, such as 
communication protocols 

 Used in software for scanning text, to find certain patterns 
 Used in “Lexical analyzers” of compilers (to turn program text into “tokens”, e.g. identifiers, 

keywords, brackets, punctuation) 
 Part of Turing machines and abacus machines 

 
Types of Finite Automaton 

1. Deterministic Finite automata (DFA) 
2. Non -deterministic finite automata  (NDFA/NFA) 

 
Deterministic Finite Automata(DFA) 
Deterministic automaton is one in which each move (transition from one state to another) is uniquely 
determined by the current configuration. If the internal states , input and contents of the storage are 
known it is possible to predict the next (future) behavior of the automaton . This is said to be 
deterministic automaton otherwise it is non - deterministic automaton. 
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Formal Definition  
A deterministic finite automaton is a quintuple M = (K,∑, δ, s, F) where 
K is a finite set of states, 
∑ is an alphabet, 
s є K is the initial state, 
F   K is the set of final states, and 
δ, the transition function, is a function from K x ∑  K. 
 
If M is in state q є K and the symbol read from the input tape is a є ∑, then δ(q, a) є K is the uniquely  
determined state to which K passes. 
 
The transition from one internal state to another are governed by transition function δ.  
If δ (q0, a) q1    then if the DFA is in state q0 and the current input symbol is 'a' the DFA will go into state 
q1   . 
 
Configuration of DFA 
 
A configuration is determined by the current state and the unread part of the string being processed.  
Let M = (K, ∑, δ, s, F) be a DFA ,we say that a word in K x ∑* is a configuration of M. It represents the 
current states of M and remaining unread input of M. e.g (q2,  ababab) is one configuration  
a b a b a b 
 
current scanning symbol 
 
The binary relation  holds between two configurations of M  if and only if the machine can pass 
from one to the other as a result of a single move. Thus if (q, w) and (q', w') are two configurations of M, 
then (q, w)  (q', w') if and only if w = aw' for some symbol a є ∑, and δ(q, a) = q'. For every 
configuration except those of the from (q, e) there is a uniquely determined next configuration. 
A configuration of the form (q, e) signifies that M has consumed all its input, and hence its operation 
ceases at this point. 

We denote the reflexive, transitive closure of is read, (q, 
w) yields (q', w') (after some number, possibly zero, of steps).  
 
A string w є ∑* is said to be accepted by M if and only if there is a state q є F such that  
(s, w)  (q, e). Finally, the language accepted by M, L(M), is the set of all strings accepted by M. 
 
Example 1 
Design a DFA that accepts the language L which has set of strings in {a, b } *  that have even number of 
b's .  
 
Solution 
Let required DFA M= (K, ∑, δ, s, F)  
where 
K= {q0,  q1 } 
∑= { a ,b} 
s=q0 
F= {   q0  } and δ is the function tabulated below 
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δ/∑ a b 
q0 q0 q1 
q1 q1 q0 
 
State transition diagram is given as  

 
e.g : If  M is given the input aabba, its initial configuration is (qo, aabba). Then  
 

 
 
Example 2:  
Design a deterministic finite automaton M that accepts the language L( M) = {w є {a, b} * :  w does not 
contain three consecutive b's}. 
 
Solution 
Let required DFA M= (K,∑, δ, s, F)  
where 
K= {q0,  q1 , q2,  q3 } 
∑= { a ,b} 
s=q0 
F= {   q0, q1, q2  } and δ is the function tabulated below 
 
δ/∑ a b 
q0 q0 q1 
q1 q0 q2 
q2 q0 q3 
q3 q3 q3 
 
State diagram is given as  
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State q3 is said to be a dead state, and if M reaches state q3 it is said to be trapped, since no further input 
can enable it to escape from this state. 
 
Example 3:  
Design a DFA, the language recognized by the Automaton being L = {a n b: n ≥ 0} 
Solution 
Let required DFA M= (K,∑, δ, s, F)  
where 
K= {q0,  q1 , q2 } 
∑= { a ,b} 
s=q0 
F= {   q1 } and δ is the function tabulated below 
 
δ/∑ a b 
q0 q0 q1 
*q1 q2 q2 
q2 q2 q2 
 
State diagram is given as 

 
 
Example 4 
Given ∑ = {a, b}, construct a DFA that shall recognize the language  L = {bmabn :m,  n > 0}. 
 
Solution 
Let required DFA M= (K,∑, δ, s, F)  
where 
K= {q0,  q1 , q2, q3 , q4} 
∑= { a ,b} 
s=q0 
F= {   q3 } and δ is the function tabulated below 
 
δ/∑ a b 
q0 q4 q1 
q1 q2 q1 
q2 q4 q3 
*q3 q4 q3 
q4 q4 q4 
 
State diagram is given as 
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Example 5:  
Construct a DFA which recognizes the set of all strings on ∑ = {a, b} starting with the prefix ‘ab’. 
 
Solution 

 
 
 
NONDETERMINISTIC FINITE AUTOMATA (NFA) 
 

 NFA has Ability to change states in a way that is only partially determined by the current state 
and input symbol.  

 Permit several possible "next states" for a given combination of current state and input symbol. 
 The automaton, as it reads the input string, may choose at each step to go into anyone of these 

legal next states; the choice is not determined by anything in our model, and is therefore said to 
be nondeterministic. 

 Nondeterministic devices are not meant as realistic models of computers. They are simply a 
useful notational generalization of finite automata, as they can greatly simplify the description of 
these automata. 

 Nondeterministic finite automaton can be a much more convenient device to design than a 
deterministic finite automaton, 

Formal Definition : A nondeterministic finite automaton is a quintuple M = (K, ∑, ∆, s, F), where 
K is a finite set of states, 
∑  is an alphabet, 
s є K is the initial state, 
F  K is the set of final states, and 
∆, the transition relation, is a subset of K x (∑  {e}) x K. 
NFA is a variant of finite automaton with two capabilities 

a. e  or  transition : state transition can made without reading a symbol 
b. non-determinism : zero or more than one possible value may exist for state transition 

For each p є K and each a є ∑{ e} , δ (s, a) =R  means  
"Upon reading an 'a ' the automaton M may transition from state s to any state in R." 
For e in particular, δ (s, e) =R means,  
"Without reading the symbol the automaton M may transition from s to any state in R" 
Configuration of NFA: 
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Examples  
To see that a nondeterministic finite automaton can be a much more convenient device to design than a 
deterministic finite automaton, consider the language L = (ab U aba)*, which is accepted by the 
deterministic finite automaton illustrated in below 

 
L is accepted by the simple nondeterministic device shown in fig below  

 
Fog: NFA for  L = (ab U aba)* 
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Fig: NFA for  L = (ab U aba)* with e-transition 
Example 2: Design a nondeterministic finite automata (NFA) that accept the set of all strings 
containing an occurrence of the pattern bb or of the pattern bab.  
Solution: 
Let required NFA M=   (K, ∑, ∆, s, F), where 
K= { qO , ql, q2, q3, q4 } 
∑= {a, b } 
s= qO 

F= { q4  } and  

  
and state diagram is given by  

 
 
When M is given the string bababab as input, several different sequences of moves may ensue. For 
example, M may wind up in the non final state qo in case the only transitions used are (qO, a, q0) and (qO, 
b, q0): 
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The same input string may drive M from state q0 to the final state q4, and indeed may do so in three 
different ways. One of these ways is the following. 

 
Since a string is accepted by a nondeterministic finite automaton if and only if there is at least one 
sequence of moves leading to a final state, it follows that bababab  є L(M) 
 
E-closure  
Epsilon closure (ε- closure) of a state q is the set that contains the state q itself and all other states 
that can be reached from state q by following ε transitions. 
We use the term, ECLOSE( q0) to denote the Epsilon closure of state q0. 
Suppose that the given NFA M= (Q,∑, δ , q0,F) . For any set s  Q of states of M, we define the 
e-closure of S, denoted by E(S) to be the set of states reachable from s via zero or more e 
transition in a row.  
Formally for I ≥ 0 ,we define Ei(S) inductively to be the set of states reachable from s via exactly 
i many  e-transitions,  so that E0(s)=s and for I ≥ 0  
Ei+1(s) =   { r ∈ Q  |  Eq ∈  Ei(s)  : r ∈ δ (q, e) } 
 =  ⋃ δ(q, e) q∈ ୧(ୱ)  
E(s) =  ⋃ Ei(s) ୧ஹୀ    
Namely, the set of all states reachable from s via zero or more e-transitions.  
e-closure(q0 ) denotes a set of all vertices p such that there is a path from q0 to p labeled . 
Example 

 
 
Equivalence of DFA and NFA 
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A DFA is just a special type of NFA . In a DFA it so happens that the transition relation  ∆  is in 
fact a function from K x ∑ to K i.e. NFA (K,∑, δ, s, F) is deterministic if and only if there are no 
transition of the form (q, e, p) in δ  and for each q ∈ K and a ∈ ∑ there is a  exactly one p ∈ K 
such that (q, a, p ) ∈ ∆ 
It is there fore evident that the class of languages accepted by DFA is a subset of the class of 
languages accepted by NFA. Rather surprisingly these classes are in fact equal. 
Despite the power and generality enjoyed by NFA, they are no more powerful than the NFA in 
terms of the language they accept. 
NFA can always be converted into an equivalent deterministic one.  
Formally, we say that the  two finite automata M1 and M2  (NFA and DFA) are equivalent if and 
only if L(M1) = L(M2). Thus two automata are considered to be equivalent if they accept  the 
same language, even though they may use different methods to do so. 
 
Theorem : For each NFA , there is equivalent DFA.  
Proof: 
Let M=(K, ∑,∆, s, F) be a NFA we shall construct a DFA M'=(K' , ∑, δ', s', F') equivalent to M. 
View a NFA as a occupying at any moment not a single state but a set of states, namely all the 
states that can be reached from the initial state  by means of the input consumed thus far.  

 The set of states of M' will be K' =2K    , the power set of states of M 
 The set of final state of M' will consist of all those subset of K that contains at least one 

final state of M. i.e. F'={ Q K : Q  F  Ø }   
 The definition of transition function  of M' is slightly complicated . The basic idea is that 

a move of M' on reading an input symbol a , possibly followed by any number of e-
moves of M.  
For every Q  K and a ∈ ∑  

δ '(Q, a)=  E( ⋃ ∈Q(ܽ,ݍ)ߜ ) 
To formalize this idea we need a special definition 
For any state q є K , let E(q) be the set of all states of M that are reachable from state q  
without reading any input (e-moves) i.e. 
 
E(q)= { p є K : (q , e)   (p , e) } 
 
To put it otherwise, E( q) is the closure of the set {q} under the relation  
{ (p, r) : there is a transition (p, e, r)  є ∆}. 
 
Thus, E(q) can be computed by the following algorithm: 

 
Initially set E(q) := {q}; 
while there is a transition (p, e, r) є ∆. with p є E( q) 
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and r ∉ E(q) do: E(q) := E(q) U {r}. 
 
Example: Convert the e-NFA given below to its corresponding DFA 

 
Solution:  
Here 
Given NFA M= (K,∑,δ, s, F) 
 E(q0)= { q0, q1, q2, q3} 

E(q1) = {ql,q2,q3}, and  
E(q2) = {q2} 
 
We are now ready to define formally the deterministic automaton M'= (K',∑,δ', s', F') that 
is equivalent to M, where  

 K' =2K     

 S'=E(s)  
 F'={ Q K : Q  F  Ø } and  

for each Q K and each symbol a ∈ ∑   ,define    
δ'(Q, a)  =  U{E(p) : p ∈ K and ( q, a, p) ∈ ∆for some q ∈ Q }  
i. e.  δ'(Q, a)  is taken to be the set of all states of M to which M can go by reading input a 
and possibly followed several e-moves. 
 
E(q0) = { q0, q1,q2,q3 }  
 
δ'(s', a)= E(q0) U E(q4) = { q0, q1,q2,q3 , q4} 
Similarly, 
 
δ'(s', b)= E(q2) U E(q4)=  { q2,q3 , q4} 

Again for newly introduced states 

δ'({ q0, q1,q2,q3 , q4} , a)= { q0, q1,q2,q3 , q4} 

δ'({ q0, q1,q2,q3 , q4} , b)= {q2,q3 , q4} 

Again for newly introduced states  {q2,q3 , q4} 

δ'({q2, q3 , q4} , a)= {q3 , q4} 
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δ'({q2,q3 , q4} , b)= {q3 , q4} 

Again, 

δ'({q3 , q4} , a)= {q3 , q4} 

δ'({q3 , q4} , b)= { Ø } 

and finally 
δ'({Ø , a)= { Ø } 
δ'({Ø , b)= { Ø } 
 
F' , the set of final states contains each set of states of which q4 is member , since q4 is 
the sole final member of  F.  

 
 

Example : Given the NFA as shown in fig. below, determine the equivalent DFA. 

 
Solution 
The given NFA has q2 and q4 as final states. It accepts strings ending in 00 or 11. The state table 
is shown below. 
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The conversion of NFA to DFA is done through the subset construction. 

 
 
Properties of Regular Languages 

1. Closure Properties 
2. Decision Properties 

 
Closure Properties of Regular Languages 
If a set of regular languages are combined using an operator, then the resulting language is also 
regular.  
 Closure property is a statement that a certain operation on languages when applied to languages 
in a class , produces a result is also in that class. 
 
Theorem: The class of languages accepted by finite automata is closed under 

 union; 
 concatenation; 
 Kleene star; 
 complementation; 
 intersection. 
 reverse 
 set difference 

We shall show that the set of regular languages is closed under each of the operations defined 
above.  
The general approach is as follows: 
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1. Build automata (DFA or NFA) for each of the languages involved. 
2. Show how to combine the automata in order to form a new automata which  

recognizes the desired language 
3. Since the language is represented by NFA/DFA , we shall conclude that the language 

is regular. 
Proof : In each case we show how to construct an automaton M that accepts the appropriate 
language, given two automata Ml and M2 (only Ml in the cases of Kleene star and 
complementation). 
Union  
The set of regular languages is closed under the union operation, i.e., if L1 and L2 are regular 
languages over the same alphabet ∑, then L1 ∪ L2 is also a regular language. 

 
Proof.   
Since L1 is regular, there is,  an NFA M1 = (K1, ∑, δ1, q1, F1), such that L1 = L(M1). Similarly, 
there is an NFA M2 = (K2,∑, δ2, q2, F2), such that L2 = L(M2).  
We may assume that K1 ∩ K2 = ∅, (K1 and K2 are disjoint sets) because otherwise, we can give 
new “names” to the states of K1 and K2. 
From these two NFAs, we will construct an NFA M = (K, ∑, δ, q0, F), such that L(M) = L1 ∪ 
L2. The construction is illustrated in Figure 2.1. The 
NFA M is defined as follows: 
1. K = K1 ∪ K2 ∪ {q0}, where q0 is a new state. 
2. q0 is the start state of M. 
3. F = F1 ∪ F2. 
4. δ : δ1 ∪ δ2 ∪ { (q0, e, q1), (q0, e, q2)}    is defined as follows:  
For any r ∈ K and for any a ∈    
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δ (r, a) = δ1(r, a)  if r ∈ K1 
 = δ2(r, a)  if r ∈ K2 
 = {q1, q2 }    if r = q0 and a = e 

= ø   if r = q0 and a ≠ e 
Steps in Union of L1 and L2 

 Create a new start state 
 Make a e-transition from the new start state to each of the original start states. 
Concatenation 
The set of regular languages is closed under the concatenation operation, i.e., if L1 and L2 
are regular languages over the same alphabet , then L1L2 is also a regular language. 

Proof.  Since L1 is regular, there is,  an NFA M1 = (K1, ∑, δ1, q1, F1), such that L1 = L(M1). 
Similarly, there is an NFA M2 = (K2,∑, δ2, q2, F2), such that L2 = L(M2).  
We may assume that K1 ∩ K2 = ∅, (K1 and K2 are disjoint sets) because otherwise, we can give 
new “names” to the states of K1 and K2. 
From these two NFAs, we will construct an NFA M = (K, ∑, δ, q0, F), such that L(M) = L1 . L2. 
The construction is illustrated in Figure 2.2. The 
NFA M is defined as follows: 
1. K = K1 ∪ K2 , 
2. q0   = q1 is the start state of M. 
3. F =  F2. 
4. δ :  is defined as follows:  
For any r ∈ K and for any a ∈    
δ (r, a) = δ1(r, a)   if r ∈ K1 and r ∉ F1 
 = δ1(r, a)   if r ∈ F1 and a ≠ e 

= δ1(r, a)  U {q2}  if r ∈ F1 and a = e 
= δ2(r, a)     if r ∈ K2   
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Fig 2.2 The NFA M accepts L(M1).L(M2) 
Steps in Concatenation of L1 and L2 

 Put a e-transition from each final state of L1 to the initial state of L2. 
 Make the original final states of L1 non final. 

Kleene  Star 
If  L is a regular language , then L*  is also a regular language. 
Let  be the alphabet of  L1 and let N = (K1,, δ1, q1, F1) be an NFA, such that  L1 = L(N). We 
will construct an NFA M = (K,, δ, q0, F), such that L(M) = L1

*.  The construction is illustrated 
in Figure 2.3. The NFA  M is defined as follows: 

 
Fig: 2.3 The NFA M accepts  L(N)* 
Where 
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K= K1U {q0} , where q0  is a new state  
q0 is the start state of m 
F= q0 U F1,     since e є L1* , q0 has to be an accepting state (final) 
δ :   for any r є K  and a є   
δ (r, a )= δ1 (r, a )   if r є k1 and r ∉ F1 
 = δ1 (r, a )   if r є F1 and a ≠ e 
 = δ1 (r, a ) U {q0}   if r є k1 and r =  F1 
 = {q1}    if r=q0 and a= e 
 = ø    if r=q0 and a ≠ e 

Steps in Kleene star of L1 
 Make a new start state; connect it to the original start state with a e-transition. 
 Make a new final state; connect the original final state (which becomes non final) to it 

with e-transitions. 
 Connect the new start state and new final state with a pair of e-transitions. 

 
Complementation 
The set of regular languages is closed under the complement operations: 
 If L1  is a regular language over the alphabet , then the complement L1 = {w є  *   : w  ∉ L1} 
is also a regular language.  
If L is an Regular over  , then Complement of L= * - L 
Proof 
To show Complement of L is also regular ,  Convert every final state into non final and every 
non final state to final state. 

 
 
Let M = (K,, δ, s, F) be a deterministic finite automaton.  
Then the complementary language L = * - L( M) is accepted by the deterministic finite automaton  
M1 = (K,, δ, s, K - F). That is, M1 is identical to M except that final and non final states are interchanged. 
 
Steps Complementation  of L1 

 Start with a complete DFA, not with an NFA 
 Make every final state non final and every non final state final. 
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Steps in Reverse of L1 

 Start with an automaton with just one final state. 
 Make the initial state final and final state initial. 
 Reverse the direction of every arc 

 
 
Steps for Intersection and Set Difference 
Just as with the other operations, it can be proved that regular languages are closed under 
intersection and set difference by starting with automata for the initial languages, and 
constructing a new automaton that represents the operation applied to the initial languages. 
In this construction, a completely new machine is formed, whose states are labelled with an 
ordered pair of state names: the first element of each pair is a state from L1 and the second 
element of each pair is a state from L2. 
 
 Begin by creating a start state whose label is (start state of L1, start state of L2). 
 Repeat the following until no new arcs can be added: 
 (1) Find a state (A, B) that lacks a transition for some x in S. 
 (2) Add a transition on x from state (A, B) to state ( δ (A, x), δ (B, x)). (If this state does not 
already exist, create it).  

 
The same construction is used for both intersection and set difference. The distinction is in how the final 
states are selected. 
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If L1 and L1 are regular languages, then so is L1 ∩ L2 . 

 
L1 ∩ L2 = ∑* - (( ∑*-L1 ) U ( ∑*-L2 ))  

 
Indirect way to proof is 

 
Direct Way to proof 
 
Proof: Let A and B be DFA’s whose languages are L1 and L2, respectively. 

 Construct C, the product automaton of A and B. 
 Make the final states of C be the pairs consisting of final states of both A and B. 

Since L1 is regular, there is,  an DFA  M1 = (K1, ∑, δ1, q1, F1), such that L1 = L(M1). Similarly, 
there is an DFA M2 = (K2, ∑, δ2, q2, F2), such that L2 = L(M2).  We can construct a DFA 
M1∩ M2 =M = (K, ∑, δ, q0, F) 
Where  
K= K1xK2,  
∑= ∑,  
q0= (q1, q2),  
F= F1 x F2 
and δ is defined Such a way that , 
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δ((p, q),a) = ( δ1(p, a) , δ2(q, a) ) , where p in K1 and q in  K2.  
This construction ensures that a string w will be accepted if and only if w reaches an accepting 
state in both input DFAs. 
Steps Intersection 
Make a state (A, B) as final if both 

(i) A is a final state in L1 and 
(ii) B is a final state in L2 

 

 
 
 
Set Difference 

Proof:  
Let A and B be DFA’s whose languages are L and M, respectively. 
Construct C, the product automaton of A and B. 
Make the final states of C be the pairs where A-state is final but B-state is not. 
 
Mark a state (A, B) as final if A is a final state in L1, but B is not a final state in L2. 

 

 
State Minimization 
Minimization of DFA 
For a given language, many DFA may exist that accept it. The DFA we produce from a NFA 
may contain many dead states, inaccessible states and indistinguishable states. All these 
unnecessary states can be eliminated from the DFA through a process called minimization. 
For practical applications, it is desirable that number of states in the DFA is minimum. 
The Algorithm for minimizing a DFA as follows: 
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1. Step 1: Eliminate any state that cannot be reached from the start state. 
2. Step 2: partition the remaining states into blocks so that all the states in the same block 

are equivalent and no pair of states from different blocks are equivalent. 
Example 
Minimise the following DFA 
Current state input symbol 

a b 
q0 q5 q1 
q1 q2 q6 
*q2 q2 q0 
q4 q5 q7 
q5 q6 q2 
q6 q4 q6 
q7 q2 q6 
q3 q6 q2 
  
Step 1: Eliminate any state that can't be reached from the start state 
In above, the state q3 can't be reached. So remove the corresponding to q3 from the transition 
table. Now the new transition table is 
Current state input symbol 

a b 
q0 q5 q1 
q1 q2 q6 
*q2 q2 q0 
q4 q5 q7 
q5 q6 q2 
q6 q4 q6 
q7 q2 q6 
Step 2: Divided the rows of the table into 2 sets as 
1. one set containing only rows which starts from non final states 
Set 1 
q0 q5 q1 
q1 q2 q6 
q4 q5 q7 
q5 q6 q2 
q6 q4 q6 
q7 q2 q6 
2. another set containing those rows which start from final states 
* q2 q2 q0 
Step 3a: Consider the set 1 
q0 q5 q1 Row1 
q1 q2 q6 Row2 
q4 q5 q7 Row3 
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q5 q6 q2 Row4 
q6 q4 q6 Row5 
q7 q2 q6 Row6 

 
Row 2 and Row 6 are similar since q1 and q7 transit to same states on inputs a and b so remove 
one of them (for instance q7) and replace q7 with q1 in rest  we get 
Set 1 
q0 q5 q1 Row1 
q1 q2 q6 Row2 
q4 q5 q1 Row3 
q5 q6 q2 Row4 
q6 q4 q6 Row5 
Now Row 1 and Row 3 are similar. So remove one of them (for instance q4) and replace q4 with 
q0 in the rest 
we get  
Set 1 
q0 q5 q1 Row1 
q1 q2 q6 Row2 
q5 q6 q2 Row3 
q6 q0 q6 Row4 
Now there are no more similar rows 
3b. Consider the set 2 
Set 2 
*q2 q2 qq0 
Do the same process for set 2 
But it contains only one row .It is already minimized 
Step 4 
Combine set 1 and set 2 
we get  
Current state input symbol 

a b 
q0 q5 q1 
q1 q2 q6 
q5 q6 q2 
q6 q0 q6 
*q2 q2 q0 
Now this is minimized DFA 
The transition diagram is 
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Similarly do  yourself  
final Minimised DFA diagram is  
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Equivalence of Regular languages and Finite Automata 
 
 Finite Automata and Regular Expressions are equivalent. To show this: 
– Show we can express a DFA as an equivalent RE 
– Show we can express a RE as an e-NFA. Since the e-NFA can be converted to a DFA and the 
DFA to an NFA, then RE will be equivalent to all the automata we have described. 
 
 
Theorem : A language is regular if and only if it is accepted by a finite automaton. 
 
Only If Part  

(a) Regular Expression to NFA Construction 
Proof:  
Recall that the class of regular languages is the smallest class of languages containing the empty 
set ø and the singletons a, where a is a symbol, and closed under union concatenation, and 
Kleene star. It is evident (see Figure below) that the empty set and all singletons are indeed 
accepted by finite automata; and by Theorem  the finite automaton languages are closed under 
union, concatenation, and Kleene star. Hence every regular language is accepted by some finite 
automaton. 
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1. For any x in , the regular expression denotes the language {x}. The NFA (with a single start state and 
a single final state) as shown below, represents exactly that language. 

 
2. The regular expression l denotes the language {} or {e} that is the language containing 

only the empty string.  

 
3. The regular expression ø denotes the language ø;  no strings belong to this language, not 

even the empty string. 

 
4. For juxtaposition/concatenation, strings in L(r1 ) followed by strings in L(r2 ), we chain 

the NFAs together as shown. 

 
5. The “+” denotes “or” in a regular expression, we would use an NFA with a choice of 

paths (Union) 

 
6. The star (*) denotes zero or more applications of the regular expression, hence a loop has 

to be set up in the NFA. 
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Examples: See on Book /Class Notes 
Consider the regular expression (ab U aab)*. A nondeterministic finite automaton 
accepting the language denoted by this regular expression can be built up using the 
methods in the proof of the various parts of Theorem.  
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IF Part  
 

(b) Finite Automata  to Regular Expression 
 
Turning a DFA into a RE 
 Theorem: If L=L(A) for some DFA A, then there is a regular expression R such that L=L(R). 
Proof 
– Construct GNFA, Generalized NFA 
– State Elimination 

 Eliminates states of the automaton and replaces the edges with regular 
expressions that include the behavior of the eliminated states. 

 Eventually we get down to the situation with just a start and final node, and this is 
easy to express as a RE 
 

Let M = (K,,∆, s, F) be a finite automaton (not necessarily deterministic). We shall construct a 
regular expression R such that L(R) = L(M). 
The basic approach to convert NFA, to Regular Expressions is as follows: 

1. If an NFA has more than one final state, convert it to an NFA with only one final 
state. Make the original final states non final, and add  a  e-transition from each to the 
new (single) final state. 

2. Consider the NFA to be a generalised transition graph, which is just like an NFA 
except that the edges may be labeled with arbitrary regular expressions. Since the 
labels on the edges of an NFA may be either e  or members of each of these can be 
considered to be a regular expression. 

3. Removes states one by one from the NFA, relabeling edge as you go, until only the 
initial and the final state remain. 

4. Read the final regular expression from the two state automatons that results. The 
regular expression derived in the final step accepts the same language as the original 
NFA. 

Examples 
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Example 2 

 
 

 Example 3 
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So regular expression R =  a*b(aUba*ba*b)* 
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Second Example 

Automata that accepts even number of 1’s 
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Generalized Finite Automata  
Generalized finite automaton, with transitions that may be labeled not only by symbols in   or e, 
but by entire regular expressions. In fig above fig (a) is Finite automata and fid  (d) is 
Generalized Finite Automata of fig a. 
 
Pumping Lemma for Regular Languages 
Let L be a regular language. There is an integer n ≥  1 such that any string W  є  L with |w| ≥ n 
can be rewritten as W = xyz such that  

 y ≠ e,  
 |xy| ≤  n, and  
 xyiz є  L for each i ≥  0. 

Examples  
See on class notes 
 
Decision property 
Decision property for a class of languages is an algorithm that takes a formal description of a 
language (e.g., a DFA) and tells whether or not some property holds. 
Example : Is language L empty? 

1. The Membership Question 
2. The Emptiness Problem 
3. The Infiniteness Problem 

ioenotes.edu.np


