
Distributed Systems Fö 9/10 - 1

Petru Eles, IDA, LiTH

FAULT TOLERANCE

1. Fault Tolerant Systems

2. Faults and Fault Models

3. Redundancy

4. Time Redundancy and Backward Recovery

5. Hardware Redundancy

6. Software Redundancy

7. Distributed Agreement with Byzantine Faults

8. The Byzantine Generals Problem

Distributed Systems Fö 9/10 - 2

Petru Eles, IDA, LiTH

Fault Tolerant Systems

☞ A system fails if it behaves in a way which is not
consistent with its specification. Such a failure is a
result of a fault in a system component.

☞ Systems are fault-tolerant if they behave in a
predictable manner, according to their specification,
in the presence of faults ⇒ there are no failures in a
fault tolerant system.

☞ Several application areas need systems to maintain a
correct (predictable) functionality in the presence of
faults:

- banking systems
- control systems
- manufacturing systems

☞ What means correct functionality in the presence of
faults?
The answer depends on the particular application (on
the specification of the system):

• The system stops and doesn’t produce any
erroneous (dangerous) result/behaviour.

• The system stops and restarts after a while
without loss of information.

• The system keeps functioning without any
interruption and (possibly) with unchanged
performance.

Distributed Systems Fö 9/10 - 3

Petru Eles, IDA, LiTH

Faults

☞ A fault can be:

1. Hardware fault: malfunction of a hardware
component (processor, communication line,
switch, etc.).

2. Software fault: malfunction due to a software
bug.

☞ A fault can be the result of:

1. Mistakes in specification or design: such mis-
takes are at the origin of all software faults and
of some of the hardware faults.

2. Defects in components: hardware faults can be
produced by manufacturing defects or by
defects caused as result of deterioration in the
course of time.

3. Operating environment: hardware faults can be
the result of stress produced by adverse envi-
ronment: temperature, radiation, vibration, etc.

Distributed Systems Fö 9/10 - 4

Petru Eles, IDA, LiTH

Faults (cont’d)

☞ Fault types according to their temporal behavior:

1. Permanent fault: the fault remains until it is re-
paired or the affected unit is replaced.

2. Intermittent fault: the fault vanishes and reap-
pears (e.g. caused by a loose wire).

3. Transient fault: the fault dies away after some
time (caused by environmental effects).

Distributed Systems Fö 9/10 - 5

Petru Eles, IDA, LiTH

Faults (cont’d)

☞ Fault types according to their output behaviour:

1. Fail-stop fault: either the processor is executing
and can participate with correct values, or it has
failed and will never respond to any request
(see omission faults, Fö 2/3, slide 20).
Working processors can detect the failed
processor by a time-out mechanism.

2. Slowdown fault: it differs from the fail-stop
model in the sense that a processor might fail
and stop or it might execute slowly for a while
⇒ there is no time-out mechanism to make
sure that a processor has failed; it might be in-
correctly labelled as failed and we can be in
trouble when it comes back (take care it
doesn’t come back unexpectedly).

3. Byzantine fault: a process can fail and stop, ex-
ecute slowly, or execute at a normal speed but
produce erroneous values and actively try to
make the computation fail ⇒ any message can
be corrupt and has to be decided upon by a
group of processors (see arbitrary faults, Fö
2/3, slide 21).

• The fail-stop model is the easiest to handle;
unfortunately, sometimes it is too simple to cover
real situations.

• The byzantine model is the most general; it is very
expensive, in terms of complexity, to implement
fault-tolerant algorithms based on this model.

Distributed Systems Fö 9/10 - 6

Petru Eles, IDA, LiTH

Faults (cont’d)

☞ A fault type specifically related to the communication
media in a distributed system:

• Partition Fault
Two processes, which need to interact, are unable
to communicate with each other because there
exists no direct or indirect link between them ⇒ the
processes belong to different network partitions.

Partition faults can be due to:
- broken communication wire
- congested communication link.

A possible very dangerous consequence:
- Processes in one network partition could

believe that there are no other working
processes in the system.

P7 P2
P5

P8

P3

P4
P1 P6

network partition network partition

Distributed Systems Fö 9/10 - 7

Petru Eles, IDA, LiTH

Redundancy

☞ If a system has to be fault-tolerant, it has to be
provided with spare capacity ⇒ redundancy:

1. Time redundancy: the timing of the system is
such, that if certain tasks have to be rerun and
recovery operations have to be performed,
system requirements are still fulfilled.

2. Hardware redundancy: the system is provided
with far more hardware than needed for basic
functionality.

3. Software redundancy: the system is provided
with different software versions:

- results produced by different versions are
compared;

- when one version fails another one can
take over.

4. Information redundancy: data are coded in
such a way that a certain number of bit errors
can be detected and, possibly, corrected (pari-
ty coding, checksum codes, cyclic codes).

Distributed Systems Fö 9/10 - 8

Petru Eles, IDA, LiTH

Time Redundancy and Backward Recovery

☞ The basic idea with backward recovery is to roll back
the computation to a previous checkpoint and to
continue from there.

☞ Essential aspects:
1. Save consistent states of the distributed sys-

tem, which can serve as recovery points.
Maintain replicated copies of data.

2. Recover the system from a recent recovery
point and take the needed corrective action.

• Creating globally coherent checkpoints for a
distributed systems is, in general, performed based
on strategies similar to those discussed in Fö 5 for
Global States and Global State Recording.

• For managing coherent replicas of data (files) see
Fö 8.

• Corrective action:
- Carry on with the same processor and software

(a transient fault is assumed).
- Carry on with a new processor (a permanent

hardware fault is assumed).
- Carry on with the same processor and another

software version (a permanent software fault is
assumed).

Distributed Systems Fö 9/10 - 9

Petru Eles, IDA, LiTH

Time Redundancy and Backward Recovery (cont’d)

Recovery in transaction-based systems

Transaction-based systems have particular features
related to recovery:

☞ A transaction is a sequence of operations (that virtu-
ally forms a single step), transforming data from one
consistent state to another.
Transactions are applied to recoverable data and
their main characteristic is atomicity:

• All-or-nothing semantics: a transaction either
completes successfully and the effects of all of
its operations are recorded in the data items,
or it fails and then has no effect at all.

- Failure atomicity: the effects are atomic
even when the server fails.

- Durability: after a transaction has complet-
ed successfully all its effects are saved in
permanent storage (this data survives
when the server process crashes).

• Isolation: The intermediate effects of a transac-
tion are not visible to any other transaction.

Distributed Systems Fö 9/10 - 10

Petru Eles, IDA, LiTH

Time Redundancy and Backward Recovery (cont’d)

☞ Transaction processing implicitly means recoverability:

• When a server fails, the changes due to all
completed transactions must be available in
permanent storage ⇒ the server can recover
with data available according to all-or-nothing
semantics.

☞ Two-phase commitment, concurrency control, and re-
covery system are the key aspects for implementing
transaction processing in distributed systems.
See data-base course!

Distributed Systems Fö 9/10 - 11

Petru Eles, IDA, LiTH

Forward Recovery

☞ Backward recovery is based on time redundancy and
on the availability of back-up files and saved
checkpoints; this is expansive in terms of time.

☞ The basic fault model behind transaction processing
and backward recovery is the fail-stop model

☞ Control applications and, in general, real-time
systems have very strict timing requirements.
Recovery has to be very fast and preferably to be
continued from the current state. For such
applications, which often are safety critical, the fail-
stop model is not realistic.

Forward recovery: the error is masked without any
computations having to be redone.

☞ Forward recovery is mainly based on hardware and,
possibly, software redundancy.

Distributed Systems Fö 9/10 - 12

Petru Eles, IDA, LiTH

Hardware Redundancy

☞ Hardware redundancy is the use of additional
hardware to compensate for failures:

• Fault detection, correction, and masking:
multiple hardware units are assigned to the
same task in parallel and their results compared.

- Detection: if one or more (but not all) units
are faulty, this shows up as a disagreement
in the results (even byzantine faults can be
detected).

- Correction and masking: if only a minority
of the units are faulty, and a majority of the
units produce the same output, the
majority result can be used to correct and
mask the failure.

• Replacement of malfunctioning units: correction
and masking are short-term measures. In
order to restore the initial performance and
degree of fault-tolerance, the faulty unit has to
be replaced.

☞ Hardware redundancy is a fundamental technique to
provide fault-tolerance in safety-critical distributed
systems: aerospace applications, automotive
applications, medical equipment, some parts of
telecommunications equipment, nuclear centres,
military equipment, etc.

Distributed Systems Fö 9/10 - 13

Petru Eles, IDA, LiTH

N-Modular Redundancy

☞ N-modular redundancy (NMR) is a scheme for
forward error recovery. N units are used, instead of
one, and a voting scheme is used on their output.

☞ The same inputs are provided to all participating
processors which are supposed to work
synchronously; a new set of inputs is provided to all
processors simultaneously, and the corresponding
set of outputs is compared.

☞ 3-modular redundancy is the most commonly used.

Processor1

Processor2

Processor3

voter

Processor4

Processor5

Processor6

Distributed Systems Fö 9/10 - 14

Petru Eles, IDA, LiTH

N-Modular Redundancy (cont’d)

☞ The voter itself can fail; the following structure, with
redondant voters, is often used:

☞ Voting on inputs from sensors:

Processor1

Processor2

Processor3

voter Processor4

Processor5

Processor6

voter

voter

voter

voter

voter

sns1

sns2

sns3

voter

voter

voter

Distributed Systems Fö 9/10 - 15

Petru Eles, IDA, LiTH

Voters

Several approaches for voting are possible. The goal is
to "filter out" the correct value from the set of candidates.

☞ The most common one: majority voter

• The voter constructs a set of classes of values,
P1, P2, ..., Pn:

- x, y ∈ Pi, if and only if x = y

• If Pi is the largest set and N is the number of
outputs (N is odd):

- if card(Pi) ≥ N/2 , then x ∈ Pi is the correct
output and the error can be masked.

- if card(Pi) < N/2 , then the error cannot be
masked (it has only been detected).

Distributed Systems Fö 9/10 - 16

Petru Eles, IDA, LiTH

Voters (cont’d)

Sometimes we can not use strict equality:
- sensors can provide slightly different values;
- the same application can be run on different

processors, and outputs can be different only
because of internal representations used (e.g.
floating point).

if |x - y| < ε, then we consider x = y.

Processor1

Processor2

Processor3

voter

3

3

5

3

Processor1

Processor2

Processor3

voter

3.1

3.02

5

3.1

any of the
values in set Pi
can be selected

Distributed Systems Fö 9/10 - 17

Petru Eles, IDA, LiTH

Voters (cont’d)

Other voting schemes:

☞ k-plurality voter

• Similar to majority voting, only that the largest set
needs not to contain more than N/2 elements:

- it is sufficient that card(Pi) ≥ k, k selected by the
designer.

☞ Median voter

• The median value is selected.

Processor2

Processor3

Processor4

voter

3

3

5

3

Processor5

Processor1

1

2

2

3

7

3

Processor1

Processor2

Processor3

voter

Distributed Systems Fö 9/10 - 18

Petru Eles, IDA, LiTH

k Fault Tolerant Systems

☞ A system is k fault tolerant if it can survive faults in k
components and still meet its specifications.

How many components do we need in order to achieve k
fault tolerance with voting?

• With fail-stop: having k+1 components is enough
to provide k fault tolerance; if k stop, the answer
from the one left can be used.

• With byzantine faults, components continue to
work and send out erroneous or random replies:
2k+1 components are needed to achieve k fault
tolerance; a majority of k+1 correct components
can outvote k components producing faulty results.

Distributed Systems Fö 9/10 - 19

Petru Eles, IDA, LiTH

Processor and Memory Level Redundancy

☞ N-modular redundancy can be applied at any level:
gates, sensors, registers, ALUs, processors,
memories, boards.

☞ If applied at a lower level, time and cost overhead
can be high:

- voting takes time
- number of additional components (voters,

connections) becomes high.

• Processor and memory are handled as a unit and
voting is on processor outputs:

P1 voterM1

P2M2

P3M3

voter

voter

Distributed Systems Fö 9/10 - 20

Petru Eles, IDA, LiTH

Processor and Memory Level Redundancy

• Processors and memories can be handled as
separate modules.

a) voting at read from memory

P1

voter

M1

P2

M2

P3

M3

voter voter

Distributed Systems Fö 9/10 - 21

Petru Eles, IDA, LiTH

Processor and Memory Level Redundancy (cont’d)

b) voting at write to memory

c) voting at read and write

P1

voter

M1

P2

M2

P3

M3

voter voter

P1

voter

M1

P2

M2

P3

M3

voter voter

voter voter voter

Distributed Systems Fö 9/10 - 22

Petru Eles, IDA, LiTH

Software Redundancy

☞ There are several aspects which make software very
different from hardware in the context of redundancy:

• A software fault is always caused by a mistake
in specification or by a bug (a design error).

1. No software faults are produced by manu-
facturing, aging, stress, or environment.

2. Different copies of identical software
always produce the same behavior for
identical inputs

Replicating the same software N times, and
letting it run on N processors, does not provide
any software redundancy: if there is a software
bug it will be produced by all N copies.

☞ N different versions of the software are needed in
order to provide redundancy.
Two possible approaches:

1. All N versions are running in parallel and voting
is performed on the output.

2. Only one version is running; if it fails, another
version is taking over after recovery.

Distributed Systems Fö 9/10 - 23

Petru Eles, IDA, LiTH

Software Redundancy (cont’d)

☞ The N versions of the software must be diverse ⇒
the probability that they fail on the same input has to
be sufficiently small.

☞ It is very difficult to produce sufficiently diverse
versions for the same software:

• Let independent teams, with no contact
between them, generate software for the same
application.

• Use different programming languages.
• Use different tools like, for example, compilers.
• Use different (numerical) algorithms.
• Start from differently formulated specifications.

Distributed Systems Fö 9/10 - 24

Petru Eles, IDA, LiTH

Distributed Agreement with Byzantine Faults

☞ Very often it is the case that distributed processes
have to come to an agreement.
For example, they have to agree on e certain value,
with which each of them has to continue operation.

• What if some of the processors are faulty and
they exhibit byzantine faults?

• How many correct processors are needed in
order to achieve k-fault tolerance?

☞ Remember (slide 17): with a simple voting scheme,
2k+1 components are needed to achieve k fault
tolerance in the case of byzantine faults ⇒ 3
processors are sufficient to mask the fault of one of
them.

• However, this is not the case for agreement !

Distributed Systems Fö 9/10 - 25

Petru Eles, IDA, LiTH

Distributed Agreement with Byzantine Faults (cont’d)

Example
P1 receives a value from the sensor, and the processors
have to continue operation with that value; in order to
achieve fault tolerance, they have to agree on the value
to continue with: this should be the value received by P1
from the sensor, if P1 is not faulty; if P1 is faulty, all non-
faulty processors should use the same value to continue
with.

Maybe, by letting P2 and P3 communicate, they could get
out of the trouble:

sns P1

P2 P3

3

3 5

P1 is faulty

sns P1

P2 P3

3

3 5

got 5 from P1

P1 is faulty

N
o

ag
re

em
en

t

P2 doesn’t know if P1
or P3 is the faulty one,
thus it cannot handle
the contradicting
inputs; the same for P3.

got 3 from P1No agreement

Distributed Systems Fö 9/10 - 26

Petru Eles, IDA, LiTH

Distributed Agreement with Byzantine Faults (cont’d)

The same if P3 is faulty:

☞ With three processors we cannot achieve agreement,
if one of them is faulty (with byzantine behaviour)!

☞ The Byzantine Generals Problem is used as a model
to study agreement with byzantine faults

sns P1

P2 P3

3

3 3
P3 is faulty

got 5 from P1

got 3 from P1

P2 doesn’t know if P1
or P3 is the faulty one,
thus it cannot handle
the contradicting inputs.

No agreement

Distributed Systems Fö 9/10 - 27

Petru Eles, IDA, LiTH

The story
• The byzantine army is preparing for a battle.
• A number of generals must coordinate among them-

selves through (reliable) messengers on weather to
attack or retreat.

• A commanding general will make the decision
whether or not to attack.

• Any of the generals, including the commander,
may be traitorous, in that they might send
messages to attack to some generals and
messages to retreat to others.

The Byzantine Generals Problem

Picture by courtesy Minas Lamprou and Ioannis Psarakis

C

Distributed Systems Fö 9/10 - 28

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

☞ The problem in the story:
• The loyal generals have all to agree to attack,

or all to retreat.
• If the commanding general is loyal, all loyal gen-

erals must agree with the decision that he made.

☞ The problem in real life (see slide 24):
• All non-faulty processors must use the same

input value.
• If the input unit (P1) is not faulty, all non-faulty

processors must use the value it provides.

Distributed Systems Fö 9/10 - 29

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

Let’s see the case with three Generals (two Generals +
the Commander): No agreement is possible if one of
three generals is traitorous.

C

at
ta

ck

retreat

C told retreat

C told attack

C

at
ta

ck

C told retreat

C told attack

traitorous

attack traitorous

Distributed Systems Fö 9/10 - 30

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

The case with four generals (three + the Commander):

C

atta
ck

retreat

traitorous

??
?

C told attack

C told attack

C told ???

C told ???

C told retreat

C told retreat

Distributed Systems Fö 9/10 - 31

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

Messages received at Gen. left: attack, ???, retreat.
Messages received at Gen. middle: ???, attack, retreat.
Messages received at Gen. right: retreat, ???, attack.

☞ The generals take their decision by majority voting on
their input; if no majority exists, a default value is
used (retreat, for example).

• If ??? = attack ⇒ all three decide on attack.
• If ??? = retreat ⇒ all three decide on retreat.
• If ??? = dummy ⇒ all three decide on retreat.

The three loyal generals have reached agreement,
despite the traitorous commander.

Distributed Systems Fö 9/10 - 32

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

Messages received at Gen. left: attack. attack, anything.
Messages received at Gen. middle: attack. attack, anything.

By majority vote on the input messages, the two loyal
generals have agreed on the message proposed by the
loyal commander (attack), regardless the messages
spread by the traitorous general.

C

atta
ck traitorous

at
ta

ck

C told attack

C told anythingC told attack

C told attack

attack

C told attack

C told anything

Distributed Systems Fö 9/10 - 33

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

The general result

To reach agreement, in the sense introduced on slide 27,
with k traitorous Generals requires a total of at least
3k + 1 Generals.

You need 3k + 1 processors to achieve k fault
tolerance for agreement with byzantine faults.

• To mask one faulty processor: total of 4 processors;
• To mask two faulty processor: total of 7 processors;
• To mask three faulty processor: total of 10 processors;
• -

Distributed Systems Fö 9/10 - 34

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

☞ Let’s come back to our real-life example (slide 24),
this time with four processors:

• P2, P3, and P4 will reach agreement on value 3,
despite the faulty input unit P1.

• P2, P3, and P4 will reach agreement on the default
value, e.g. 0 (used when no majority exists),
despite the faulty input unit P1.

sns P1

P2 P3

3

3 5

got 3 from P1

P1 is faulty

got 3 from P1
P4

got 5 from P1

got 3 from P1

got 3 from P1

got 5 from P1

3

sns P1

P2 P3

3

3 5

got 7 from P1

P1 is faulty

got 3 from P1
P4

got 5 from P1

got 7 from P1

got 3 from P1

got 5 from P1

7

Distributed Systems Fö 9/10 - 35

Petru Eles, IDA, LiTH

The Byzantine Generals Problem (cont’d)

☞ The two non-faulty processors P2 and P3 agree on
value 3, which is the value produced by the non-faulty
input unit P1.

sns P1

P2 P3

3

3 3

got 3 from P1

P4 is faulty

got 3 from P1
P4

got 5 from P1

got 3 from P1

got 3 from P1

got 3 from P1

3

Distributed Systems Fö 9/10 - 36

Petru Eles, IDA, LiTH

Summary

• Several application areas need fault-tolerant
systems. Such systems behave in a predictable
manner, according to their specification, in the
presence of faults.

• Faults can be hardware or software faults.
Depending on their temporal behavior, faults can be
permanent, intermittent, or transient.

• The fault model which is the easiest to handle is
fail-stop; according to this model, faulty processors
simply stop functioning. For real-life applications
sometimes a more general fault model has to be
considered. The byzantine fault model captures the
behavior of processors which produce erroneous
values and actively try to make computations fail.

• The basic concept for fault-tolerance is redundancy:
time redundancy, hardware redundancy, software
redundancy, and information redundancy.

• Backward recovery achieves fault-tolerance by
rolling back the computation to a previous
checkpoint and continuing from there.

• Backward recovery is typically used in transaction-
based systems.

Distributed Systems Fö 9/10 - 37

Petru Eles, IDA, LiTH

Summary (cont’d)

• Several applications, mainly those with strong
timing constraints, have to rely on forward recovery.
In this case errors are masked without any
computation having to be redone.

• Forward recovery is based on hardware and/or
software redundancy.

• N-Modular redundancy is the basic architecture for
forward recovery. It is based on the availability of
several components which are working in parallel
so that voting can be performed on their outputs.

• A system is k fault tolerant if it can survive faults in k
components and still meet its specifications.

• Software redundancy is a particularly difficult and
yet unsolved problem. The main difficulty is to
produce different versions of the same software, so
that they don’t fail on the same inputs.

• The problem of reliable distributed agreement in a
system with byzantine faults has been described as
the Byzantine generals problem.

• 3k + 1 processors are needed in order to achieve
distributed agreement in the presence of k
processors with byzantine faults.

