
Consistency and Replication

Chapter 6

www.getmyuni.com

Reasons for Replication

• Data replication is a common technique in distributed
systems. There are two reasons for data replication:

– It creases the reliability of a system.

• If one replica is unavailable or crashes, use another

• Protect against corrupted data

– It improves the performance of a system.

• Scale with size of the distributed system (replicated Web
servers)

• Scale in geographically distributed systems (Web proxies)

• The key issue is the need to maintain consistency of
replicated data.

– If one copy is modified, others become inconsistent.

www.getmyuni.com

Object Replication

• There are two approaches for object sharing:

– The object itself can handle concurrent invocation.

• A Java object can be constructed as a monitor by declaring
the object’s methods to be synchronized.

– The object is completely unprotected against
concurrent invocations, but the server in which the
object resides is made responsible for concurrency
control.

• In particular, use an appropriate object adapter.

www.getmyuni.com

Object Replication

Organization of a distributed remote object shared by
two different clients.

www.getmyuni.com

Object Replication

• There are two approaches for object replication:

– The application is responsible for replication.

• Application needs to handle consistency issues.

– The system (middleware) handles replication.

• Consistency issues are handled by the middleware.

• It simplifies application development but makes object-
specific solutions harder.

www.getmyuni.com

Object Replication

a) A remote object capable of handling concurrent invocations on its own.

b) A remote object for which an object adapter is required to handle
concurrent invocations

www.getmyuni.com

Object Replication

a) A distributed system for replication-aware distributed objects.

b) A distributed system responsible for replica management

www.getmyuni.com

Replication and Scaling

• Replication and caching are used for system scalability.

• Multiple copies improve performance by reducing
access latency but have higher network overheads of
maintaining consistency.

– Example: An object is replicated N times.

• Consider the Read frequency R and the write frequency W

• If R << W, high consistency overhead and wasted
messages

• Consistency maintenance is itself an issue

– What semantics to provide?

– Tight consistency requires globally synchronized
clocks.

www.getmyuni.com

Replication and Scaling

• The solution is to loosen consistency
requirements.

– Variety of consistency semantics possible

• Consistency model (consistency semantics)

– Contract between processes and the data store

• If processes obey certain rules, data store will work
correctly.

– All models attempt to return the results of the last
write for a read operation.

• Differ in how last write is determined/defined

www.getmyuni.com

Data-Centric Consistency Models

The general organization of a logical data store, physically
distributed and replicated across multiple processes.

www.getmyuni.com

Strict Consistency

• Definition: Any read on a data item X returns a value

corresponding to the result of the most recent write on X.

• This definition implicitly assumes the existence of absolute

global time. Naturally available in uni-processor systems, but

impossible to implement in distributed systems.

• Behavior of two processes, operating on the same data

item.

– A strictly consistent store.

– A store that is not strictly consistent.

www.getmyuni.com

Sequential Consistency

a) A sequentially consistent data store.

b) A data store that is not sequentially consistent.

• Sequential consistency: The result of any execution is the same

as if the (read and write) operations by all processes on the data

store were executed in some sequential order and the operations

of each individual process appear in this sequence in the order

specified by its program.

• All processes see the same interleaving of (write) operations.

www.getmyuni.com

Linearizability
• Definition: The result of any execution is the same as if the

(read and write) operations by all processes on the data store
were executed in some sequential order and the operations of
each individual process appear in this sequence in the order
specified by its program. In addition, if TSop1(x) < TSop2(y),
then operation OP1(x) should precede OP2(y) in this
sequence.

• In this model, operations are assumed to receive a timestamp
using a globally available clock with finite precision.

• A linearizable data store is also sequentially consistent, but it is
more expensive to implement than sequential consistency

• Linearizability is primarily used to assist formal verification of
concurrent programs,

www.getmyuni.com

Analysis of Sequential Consistency

Four valid execution sequences for the processes of the previous slide.

x = 1;

print ((y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

Signature:

001011

(a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

Signature:

101011

(b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

Signature:

110101

(c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

Signature:

111111

(d)

Process P1 Process P2 Process P3

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Three concurrently executing processes.

www.getmyuni.com

Sequential Consistency and Serializability

• Definition: Sequential consistency is
comparable to serializability in the case of
transactions.

• The deference is that of granularity: sequential
consistency is defined in terms of read and write
operations, whereas serializability is defined in
terms of transactions, which aggregate such
operations.

• Sequential consistency is a programmer-friendly
model, but it has serious performance problems.
So other weaker consistency models have been
proposed.

www.getmyuni.com

Causal Consistency

• Causal consistency requires a total order of causally
related write operations only.

1. A read is causally related to the write that provided the data
the read got.

2. A write is causally related to a read that happened before this
write in the same process.

3. If write1 read, and read write2, then write1 write2.

• Necessary condition for causal consistency:
Writes that are potentially casually related must be seen
by all processes in the same order. Concurrent writes
may be seen in a different order on different machines.

www.getmyuni.com

Casual Consistency

• This sequence is allowed with a casually-consistent
store, but not with sequentially or strictly consistent
store.

Note: W1(x)a W2(x)b, but W2(x)b || W1(x)c

www.getmyuni.com

Casual Consistency

a) A violation of a casually-consistent store.

b) A correct sequence of events in a casually-consistent store.

www.getmyuni.com

FIFO Consistency

A valid sequence of events of FIFO consistency

• Necessary Condition:

Writes done by a single process are seen by all

other processes in the order in which they were

issued, but writes from different processes may be

seen in a different order by different processes.

www.getmyuni.com

FIFO Consistency

Statement execution as seen by the three processes from the
previous slide. The statements in bold are the ones that
generate the output shown.

x = 1;

print (y, z);

y = 1;

print(x, z);

z = 1;

print (x, y);

Prints: 00

(a)

x = 1;

y = 1;

print(x, z);

print (y, z);

z = 1;

print (x, y);

Prints: 10

(b)

y = 1;

print (x, z);

z = 1;

print (x, y);

x = 1;

print (y, z);

Prints: 01

(c)

www.getmyuni.com

FIFO Consistency

Two concurrent processes.

Process P1 Process P2

x = 1;

if (y == 0) kill (P2);

y = 1;

if (x == 0) kill (P1);

www.getmyuni.com

Weak Consistency

• Properties of Weak Consistency:

– Accesses to synchronization variables associated with a
data store are sequentially consistent

– No operation on a synchronization variable is allowed
to be performed until all previous writes have been
completed everywhere

– No read or write operation on data items are allowed to
be performed until all previous operations to
synchronization variables have been performed.

• You don't care that reads and writes of a series of
operations are immediately known to other
processes. You just want the effect of the series
itself to be known.

www.getmyuni.com

Weak Consistency

A program fragment in which some variables may be

kept in registers.

int a, b, c, d, e, x, y; /* variables */

int *p, *q; /* pointers */

int f(int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */

b = y * y; /* b as well */

c = a*a*a + b*b + a * b; /* used later */

d = a * a * c; /* used later */
p = &a; /* p gets address of a */

q = &b /* q gets address of b */

e = f(p, q) /* function call */

www.getmyuni.com

Weak Consistency

• Properties of Weak Consistency:

– Accesses to synchronization variables associated with a
data store are sequentially consistent

– No operation on a synchronization variable is allowed
to be performed until all previous writes have been
completed everywhere

– No read or write operation on data items are allowed to
be performed until all previous operations to
synchronization variables have been performed.

• You don't care that reads and writes of a series of
operations are immediately known to other
processes. You just want the effect of the series
itself to be known.

www.getmyuni.com

Weak Consistency

a) A valid sequence of events for weak consistency.

b) An invalid sequence for weak consistency.

• Weak consistency implies that we need to lock and unlock

data (implicitly or not).

www.getmyuni.com

Release Consistency

A valid event sequence for release consistency.

• Divide access to a synchronization variable into

two parts: an acquire and a release phase. Acquire

forces a requester to wait until the shared data can

be accessed; release sends requester's local value

to other servers in data store.

www.getmyuni.com

Release Consistency

• Rules:

– Before a read or write operation on shared data is

performed, all previous acquires done by the

process must have completed successfully.

– Before a release is allowed to be performed, all

previous reads and writes by the process must

have completed

– Accesses to synchronization variables are FIFO

consistent (sequential consistency is not required).

www.getmyuni.com

Entry Consistency

• Conditions:

– An acquire access of a synchronization variable is not
allowed to perform with respect to a process until all updates
to the guarded shared data have been performed with respect
to that process.

– Before an exclusive mode access to a synchronization
variable by a process is allowed to perform with respect to
that process, no other process may hold the synchronization
variable, not even in nonexclusive mode.

– After an exclusive mode access to a synchronization variable
has been performed, any other process's next nonexclusive
mode access to that synchronization variable may not be
performed until it has performed with respect to that
variable's owner.

www.getmyuni.com

Entry Consistency

• A valid event sequence for entry consistency.

• Where release consistency affects all shared data, entry

consistency affects only those shared data associated

with a synchronization variable.

www.getmyuni.com

Summary of Consistency Models

a) Consistency models not using synchronization operations.

b) Models with synchronization operations.

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order. Accesses are

furthermore ordered according to a (nonunique) global timestamp

Sequential
All processes see all shared accesses in the same order. Accesses are not ordered in

time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used. Writes from

different processes may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is

entered.

(b)

www.getmyuni.com

ClientCentric Consistency Models

• Goal: Show how we can perhaps avoid systemwide

consistency, by concentrating on what specific clients

want, instead of what should be maintained by servers.

• Background: Most largescale distributed systems (i.e.,

databases) apply replication for scalability, but can

support only weak consistency:

• DNS: Updates are propagated slowly, and inserts may

not be immediately visible.

• NEWS: Articles and reactions are pushed and pulled

throughout the Internet, such that reactions can be seen

before postings.

www.getmyuni.com

ClientCentric Consistency Models

• Lotus Notes: Geographically dispersed servers

replicate documents, but make no attempt to keep

(concurrent) updates mutually consistent.

• WWW: Caches all over the place, but there need be no

guarantee that you are reading the most recent version

of a page.

www.getmyuni.com

Consistency for Mobile Users
• Example: Consider a distributed database to which you have

access through your notebook. Assume your notebook acts as a

front end to the database.

– At location A you access the database doing reads and

updates.

– At location B you continue your work, but unless you access

the same server as the one at location A, you may detect

inconsistencies:

• your updates at A may not have yet been propagated to B

• you may be reading newer entries than the ones available at A

• your updates at B may eventually conflict with those at A

• Note: The only thing you really want is that the entries you

updated and/or read at A, are in B the way you left them in A. In

that case, the database will appear to be consistent to you.

www.getmyuni.com

Eventual Consistency

The principle of a mobile user accessing different

replicas of a distributed database.

www.getmyuni.com

Monotonic Reads

• If a process reads the value of a data item x, any

successive read operation on x by that process will

always return that same or a more recent value.

• Example: Automatically reading your personal

calendar updates from different servers. Monotonic

Reads guarantees that the user sees all updates, no

matter from which server the automatic reading takes

place.

• Example: Reading (not modifying) incoming mail

while you are on the move. Each time you connect to a

different email server, that server fetches (at least) all

the updates from the server you previously visited.

www.getmyuni.com

Monotonic Reads

The read operations performed by a single process P at two
different local copies of the same data store.

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads.

www.getmyuni.com

Monotonic Writes

• If a A write operation by a process on a data item x is

completed before any successive write operation on x

by the same process.

• Example: Updating a program at server S2 , and

ensuring that all components on which compilation

and linking depends, are also placed at S2 .

• Example: Maintaining versions of replicated files in

the correct order everywhere (propagate the previous

version to the server where the newest version is

installed).

www.getmyuni.com

Monotonic Writes

The write operations performed by a single process P at two different local
copies of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write consistency.

www.getmyuni.com

Read Your Writes

• The effect of a write operation by a process on data

item x, will always be seen by a successive read

operation on x by the same process.

• Example: Updating your Web page and guaranteeing

that your Web browser shows the newest version

instead of its cached copy.

www.getmyuni.com

Read Your Writes

a) A data store that provides read-your-writes consistency.

b) A data store that does not.

www.getmyuni.com

Writes Follow Reads

• The effect of a write operation by a process on data item x, will

always be seen by a successive read operation on x by the same

process.

• Example: Updating your Web page and guaranteeing that your

Web browser shows the newest version instead of its cached

copy.

• A write operation by a process on a data item x following a

previous read operation on x by the same process, is guaranteed

to take place on the same or a more recent value of x that was

read.

• Example: See reactions to posted articles only if you have the

original posting (a read ``pulls in'' the corresponding write

operation).

www.getmyuni.com

Writes Follow Reads

a) A writes-follow-reads consistent data store

b) A data store that does not provide writes-follow-reads
consistency

www.getmyuni.com

Replica Placement

• The effect Model: We consider objects (and don't

worry whether they contain just data or code, or both)

• Distinguish different processes: A process is capable

of hosting a replica of an object or data:

– Permanent replicas: Process/machine always having a

replica

– Serverinitiated replica: Process that can dynamically host a

replica on request of another server in the data store

– Clientinitiated replica: Process that can dynamically host a

replica on request of a client (client cache)

www.getmyuni.com

Replica Placement

The logical organization of different kinds of

copies of a data store into three concentric rings.

www.getmyuni.com

Server-Initiated Replicas

• The Keep track of access counts per file,

aggregated by considering server closest to

requesting clients

• Number of accesses drops below threshold D

drop file

• Number of accesses exceeds threshold R

replicate file

• Number of access between D and R migrate file

www.getmyuni.com

Server-Initiated Replicas

Counting access requests from different clients.

www.getmyuni.com

Update Propagation

• There are three possibilities of propagation update:

– The Propagate only notification/invalidation of update (often

used for caches)

– Transfer data from one copy to another (distributed

databases)

– Propagate the update operation to other copies (also called

active replication)

• No single approach is the best, but depends highly on

available bandwidth and readtowrite ratio at replicas.

www.getmyuni.com

Pull versus Push Protocols

A comparison between push-based and pull-based protocols

in the case of multiple client, single server systems.

Issue Push-based Pull-based

State of server List of client replicas and caches None

Messages sent Update (and possibly fetch update later) Poll and update

Response time at

client
Immediate (or fetch-update time) Fetch-update time

• There Pushing updates: serverinitiated approach, in

which update is propagated regardless whether target

asked for it.

• Pulling updates: clientinitiated approach, in which

client requests to be updated.

www.getmyuni.com

Epidemic Algorithms
• Basic idea: Assume there are no write--write conflicts:

– Update operations are initially performed at one or only a

few replicas

– A replica passes its updated state to a limited number of

neighbors

– Update propagation is lazy, i.e., not immediate

– Eventually, each update should reach every replica

• Antientropy: Each replica regularly chooses another

replica at random, and exchanges state differences,

leading to identical states at both afterwards

• Gossiping: A replica which has just been updated (i.e.,

has been contaminated), tells a number of other

replicas about its update (contaminating them as well).

www.getmyuni.com

System Model

• We consider a collection servers, each storing a

number of objects

• Each object O has a primary server at which

updates for O are always initiated (avoiding

writewrite conflicts)

• An update of object O at server S is always

timestamped; the value of O at S is denoted

VAL (O, S)

• T (O, S) denotes the timestamp of the value of

object O at server S

www.getmyuni.com

Consistency Protocols

• Consistency protocol: describes the implementation of

a specific consistency model. We will concentrate only

on sequential consistency.

– Primary-based protocols

– Replicated-write protocols

– Cache-coherence protocols

www.getmyuni.com

Consistency Protocols

• Examples of primarybased protocols

– Used in traditional clientserver systems that do not support

replication.

– Traditionally applied in distributed databases and file

systems that require a high degree of fault tolerance.

Replicas are often placed on same LAN.

– Establishes only a fully distributed, nonreplicated data store.

Useful when writes are expected to come in series from the

same client (e.g., mobile computing without replication)

– Distributed shared memory systems, but also mobile

computing in disconnected mode (ship all relevant files to

user before disconnecting, and update later on).

www.getmyuni.com

Remote-Write Protocols

Primary-based remote-write protocol with a fixed server

to which all read and write operations are forwarded.

www.getmyuni.com

Remote-Write Protocols

The principle of primary-

backup protocol.

www.getmyuni.com

Local-Write Protocols

Primary-based local-write protocol in which a single copy is
migrated between processes.

www.getmyuni.com

Local-Write Protocols

Primary-backup protocol in which the primary migrates

to the process wanting to perform an update.

www.getmyuni.com

ReplicatedWrite Protocols

• Active replication: Updates are forwarded to multiple

replicas, where they are carried out. There are some

problems to deal with in the face of replicated

invocations.

• Replicated invocations: Assign a coordinator on each

side (client and server), which ensures that only one

invocation, and one reply is sent.

• Quorumbased protocols: Ensure that each operation

is carried out in such a way that a majority vote is

established: distinguish read quorum and write

quorum.

www.getmyuni.com

Active Replication

The problem of replicated invocations.

www.getmyuni.com

Active Replication

a) Forwarding an invocation request from a replicated object.

b) Returning a reply to a replicated object.

www.getmyuni.com

Quorum-Based Protocols

Three examples of the voting algorithm:

a) A correct choice of read and write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)

www.getmyuni.com

Orca

A simplified stack object in Orca, with internal

data and two operations.

OBJECT IMPLEMENTATION stack;

top: integer; # variable indicating the top
stack: ARRAY[integer 0..N-1] OF integer # storage for the stack

OPERATION push (item: integer) # function returning nothing
BEGIN

GUARD top < N DO

stack [top] := item; # push item onto the stack
top := top + 1; # increment the stack pointer

OD;
END;

OPERATION pop():integer; # function returning an integer
BEGIN

GUARD top > 0 DO # suspend if the stack is empty

top := top – 1; # decrement the stack pointer
RETURN stack [top]; # return the top item

OD;
END;

BEGIN

top := 0; # initialization
END;

www.getmyuni.com

Management of Shared Objects in Orca

Four cases of a process P performing an operation on
an object O in Orca.

www.getmyuni.com

Example: Lazy Replication

• We asic model: Number of replica servers

jointly implement a causalconsistent data store.

Clients normally talk to front ends which

maintain data to ensure causal consistency.

www.getmyuni.com

Casually-Consistent Lazy Replication

The general organization of a distributed data store. Clients are

assumed to also handle consistency-related communication.

www.getmyuni.com

Processing Read Operations

Performing a read operation at a local copy.

www.getmyuni.com

Lazy Replication: Vector Timestamps

• VAL(i): VAL(i)[i] denotes the total number of write operations

sent directly by a front end (client). VAL(i)[j] denotes the

number of updates sent from replica #j.

• WORK(i): WORK(i)[i] total number of write operations

directly from front ends, including the pending ones.

WORK(i)[j] is total number of updates from replica #j,

including pending ones.

• LOCAL(C): LOCAL(C)[j] is (almost) most recent value of

VAL(j)[j] known to front end C (will be refined in just a

moment)

• DEP(R): Timestamp associated with a request, reflecting what

the request depends on.

www.getmyuni.com

Processing Write Operations

Performing a write operation at a local copy.

www.getmyuni.com

