
A distributed system, also known as distributed computing, is a system with multiple
components located on different machines that communicate and coordinate actions in order to
appear as a single coherent system to the end-user.

Advantages of Distributed Systems
Some advantages of Distributed Systems are as follows −

● All the nodes in the distributed system are connected to each other. So nodes can easily
share data with other nodes.

● More nodes can easily be added to the distributed system i.e. it can be scaled as
required.

● The failure of one node does not lead to the failure of the entire distributed system.
Other nodes can still communicate with each other.

● Resources like printers can be shared with multiple nodes rather than being restricted to
just one.

Disadvantages of Distributed Systems
Some disadvantages of Distributed Systems are as follows −

● It is difficult to provide adequate security in distributed systems because the nodes as
well as the connections need to be secured.

Compiled By Diwas Pandey
1

https://aihubprojects.com/

● Some messages and data can be lost in the network while moving from one node to
another.

● The database connected to the distributed systems is quite complicated and difficult to
handle as compared to a single user system.

● Overloading may occur in the network if all the nodes of the distributed system try to
send data at once.

Examples of distributed systems/applications of distributed computing :

● Intranets, Internet, WWW, email
● Telecommunication networks: Telephone networks and Cellular networks.
● The network of branch office computers -Information system to handle automatic

processing of orders,
● Real-time process control: Aircraft control systems,
● Electronic banking,
● Airline reservation systems,
● Sensor networks,
● Mobile and Pervasive Computing systems.

The key features of a distributed system are:

1. Components in the system are concurrent. A distributed system allows resource sharing,
including software by systems connected to the network at the same time.

2. There can be multiple components, but they will generally be autonomous in nature.
3. A global clock is not required in a distributed system. The systems can be spread across

different geographies.
4. Compared to other network models, there is greater fault tolerance in a distributed

model.
5. The price/performance ratio is much better.

The key goals of a distributed system include:

● Transparency: Achieving the image of a single system image without concealing the
details of the location, access, migration, concurrency, failure, relocation, persistence,
and resources to the users

● Openness: Making the network easier to configure and modify
● Reliability: Compared to a single system, a distributed system should be highly capable

of being secure, consistent, and have a high capability of masking errors.
● Performance: Compared to other models, distributed models are expected to give a

much-wanted boost to performance.
● Scalability: Distributed systems should be scalable with respect to geography,

administration, or size.

Compiled By Diwas Pandey
2

https://aihubprojects.com/

Challenges for distributed systems include:

● Security is a big challenge in a distributed environment, especially when using public
networks.

● Fault tolerance could be tough when the distributed model is built based on unreliable
components.

● Coordination and resource sharing can be difficult if proper protocols or policies are not
in place.

● Process knowledge should be put in place for the administrators and users of the
distributed model.

Transparency:
The distributed systems should be perceived as a single entity by the users or the application
programmers rather than as a collection of autonomous systems, which are cooperating. The
users should be unaware of where the services are located and also the transferring from a
local machine to a remote one should also be transparent.

Types of Transparencies
The implementation of the distributed system is very complex, as a number of issues have to
be considered to achieve its final objective. The complexities should not worry the user of the
distributed system from using it i.e., the complexities should be hidden from the user who uses
the distributed system. This property of the distributed system is called its transparency. There
are different kinds of transparencies that the distributed system has to incorporate. The
following are the different transparencies encountered in the distributed systems.

1. Access Transparency: Clients should be unaware of the distribution of the files. The files
could be present on a totally different set of servers which are physically distant apart and a
A single set of operations should be provided to access these remote as well as the local files.
Applications written for the local file should be able to be executed even for the remote files. The
examples illustrating this property are the File system in Network File System (NFS), SQL
queries, and Navigation of the web.

2. Location Transparency: Clients should see a uniform file namespace. Files or groups of
files may be relocated without changing their pathnames. A location transparent name contains
no information about the named object’s physical location. This property is important to support
the movement of the resources and the availability of services. The location and access
transparencies together are sometimes referred to as Network transparency. The examples are
The File system in NFS and the pages of the web.

Compiled By Diwas Pandey
3

https://aihubprojects.com/

3. Concurrency Transparency: Users and Applications should be able to access shared data
or objects without interference from each other. This requires very complex mechanisms in
a distributed system since there exists true concurrency rather than the simulated concurrency
of a central system. The shared objects are accessed simultaneously. The concurrency control
and its implementation is a hard task. The examples are NFS, Automatic Teller Machine (ATM)
Network.

4. Replication Transparency: This kind of transparency should be mainly incorporated for the
distributed file systems, which replicate the data at two or more sites for more reliability. The
client generally should not be aware that a replicated copy of the data exists. The clients should
also expect operations to return only one set of values. The examples are Distributed DBMS
and Mirroring of Web pages.

5. Failure Transparency: Enables the concealment of faults, allowing user and application
programs to complete their tasks despite the failure of hardware or software components. Fault
tolerance is provided by the mechanisms that relate to access transparency. The distributed
system is more prone to failures as any of the components may fail which may lead to
degraded service or the total absence of that service. As the intricacies are hidden the
distinction between a failed and a slow running process is difficult. Examples are Database
Management Systems.

6. Migration Transparency: This transparency allows the user to be unaware of the movement
of information or processes within a system without affecting the operations of the users and the
applications that are running. This mechanism allows for the load balancing of any particular
client, which might be overloaded. The systems that implement this transparency are NFS and
Web pages.

7. Performance Transparency: Allows the system to be reconfigured to improve the
performance as the load varies.

8. Scaling Transparency: A system should be able to grow without affecting application
algorithms. Graceful growth and evolution is an important requirement for most enterprises. A
system should also be capable of scaling down to small environments where required, and be
space and/or time-efficient as required. The best-distributed system example implementing this
transparency is the World Wide Web.

Compiled By Diwas Pandey
4

https://aihubprojects.com/

MIDDLEWARE IN DISTRIBUTED SYSTEM
Middleware in the context of distributed applications is software that provides services beyond
those provided by the operating system to enable the various components of a distributed
system to communicate and manage data. Middleware supports and simplifies complex
distributed applications. It includes web servers, application servers, messaging, and similar
tools that support application development and delivery.

Middleware sits "in the middle" between application software that may be working on different
operating systems. Middleware is typically used in distributed systems where it simplifies
software development by doing the following:

● Hides the intricacies of distributed applications
● Hides the heterogeneity of hardware, operating systems, and protocols
● Provides uniform and high-level interfaces used to make interoperable, reusable, and

portable applications
● Provides a set of common services that minimize duplication of efforts and enhances

collaboration between applications

Some of the abstractions provided by middleware include the following:

● Remote method invocation
● Group communication
● Event notification
● Object replication
● Real-time data transmission

Examples of middleware include the following:

● Java RMI
● CORBA
● DCOM

The users of a true distributed system should not know, on which machine their
programs are running and where their files are stored.

Compiled By Diwas Pandey
5

https://aihubprojects.com/

CENTRALIZED COMPUTING:
This is done at a central location using terminals that are attached to a central computer. The
computer itself may control all the peripherals directly (if they are physically connected to the
central computer) or they may be attached via a terminal server. Alternatively, if the terminals
have the capability, they may be able to connect to the central computer over the network.
Centralized computing offers greater security because all the processing is controlled in a
central location. In addition, if one terminal breaks down the user can simply go to another
terminal and log in again and all their files will still be accessible. The central computer performs
the computing functions and controls the remote terminals. The disadvantage of this system is
that this system of computing relies totally on the central computer, should the central computer
crash, the entire system will be unavailable (go down). Accessing the network may also be slow.

 ADVANTAGES OF DISTRIBUTED SYSTEMS OVER CENTRALIZED SYSTEMS

● RELIABILITY: If one machine crashes, the system as a whole can still survive.
● SPEED: A distributed system may have more total computing power than a mainframe
● OPEN SYSTEM: Since it is an open system it is always ready to communicate with other

systems. An open system that scales has an advantage over a perfectly closed and
self-contained system.

● ECONOMIC: A collection of microprocessors offers a better price or performance than
mainframes.

● INCREMENTAL GROWTH: Computing power can be added in small increments

Compiled By Diwas Pandey
6

https://aihubprojects.com/

MODELS OF DISTRIBUTED SYSTEM
Distributed System Models is as follows:

1. Architectural Models
2. Interaction Models (Fundamental Model)
3. Fault Models (Fundamental Model)

1. Architectural Models

The architectural model describes responsibilities distributed between system components and
how are these components placed.

a)Client-server model

☞ The system is structured as a set of processes, called servers, that offer services to the
users, called clients.

● The client-server model is usually based on a simple request/reply protocol,
implemented with send/receive primitives or using remote procedure calls (RPC) or
remote method invocation (RMI):

● The client sends a request (invocation) message to the server asking for some service;
● The server does the work and returns a result (e.g. the data requested) or an error code

if the work could not be performed.

Compiled By Diwas Pandey
7

https://aihubprojects.com/

A server can itself request services from other servers; thus, in this new relation, the server itself
acts as a client.

b)Peer-to-peer

☞ All processes (objects) play a similar role.

● Processes (objects) interact without a particular distinction between clients and servers.
● The pattern of communication depends on the particular application.
● A large number of data objects are shared; any individual computer holds only a small

part of the application database.
● Processing and communication loads for access to objects are distributed across many

computers and access links.
● This is the most general and flexible model.

● Peer-to-Peer tries to solve some of the above
● It distributes shared resources widely -> share computing and communication loads.

☞ Problems with peer-to-peer:

● High complexity due to
○ Cleverly place individual objects
○ retrieve the objects
○ maintain a potentially large number of replicas.

Compiled By Diwas Pandey
8

https://aihubprojects.com/

2.Interaction Model (Fundamental Model)

Interaction models are for handling time i. e. for process execution, message delivery, clock
drifts, etc.

● Synchronous distributed systems

Main features:

● Lower and upper bounds on the execution time of processes can be set.
● Transmitted messages are received within a known bounded time.
● Drift rates between local clocks have a known bound.

Important consequences:

1. In synchronous distributed systems there is a notion of global physical time (with a
known relative precision depending on the drift rate).

2. Only synchronous distributed systems have predictable behavior in terms of timing. Only
such systems can be used for hard real-time applications.

3. In synchronous distributed system it is possible and safe to use timeouts in order to
detect failures of a process or communication link.

☞ It is difficult and costly to implement synchronous distributed systems.

● Asynchronous distributed systems

☞ Many distributed systems (including those on the Internet) are asynchronous. - No bound on
process execution time (nothing can be assumed about speed, load, and reliability of
computers). - No bound on message transmission delays (nothing can be assumed about
speed, load, and reliability of interconnections) - No bounds on drift rates between local clocks.

Important consequences:

1. In an asynchronous distributed system there is no global physical time. Reasoning can
be only in terms of logical time (see lecture on time and state).

2. Asynchronous distributed systems are unpredictable in terms of timing.
3. No timeouts can be used.

☞ Asynchronous systems are widely and successfully used in practice.

In practice, timeouts are used with asynchronous systems for failure detection.

However, additional measures have to be applied in order to avoid duplicated messages,
duplicated execution of operations, etc.

Compiled By Diwas Pandey
9

https://aihubprojects.com/

3. Fault Models (Fundamental Model)

☞ Failures can occur both in processes and communication channels. The reason can be both
software and hardware faults.

☞ Fault models are needed in order to build systems with predictable behavior in case of faults
(systems that are fault-tolerant).

☞ such a system will function according to the predictions, only as long as the real faults
behave as defined by the “fault model”.

Compiled By Diwas Pandey
10

https://aihubprojects.com/

Resource Sharing
Resource sharing means that the existing resources in a distributed system can be accessed or
remotely accessed across multiple computers in the system. Computers in distributed systems
shares resources like hardware (disks and printers), software (files, windows, and data objects),
and data. Hardware resources are shared for reductions in cost and convenience. Data is
shared for consistency and exchange of information.

Resources are managed by a software module known as a resource manager.
Every resource has its own management policies and methods.

Resource sharing and web challenges in distributed systems include the following points

● Transparency is described as the ambush from the user and the utilization programmer
of the division of components in a shared system so that the arrangement is perceived
as a whole, preferably than as a combination of independent components.

● The openness of a computer system is the feature that determines whether the
operation can be stretched and reimplemented in multiple forms or not.

● Both services and applications produce the support that can be yielded by consumers in
a dispersed arrangement. There is, therefore, a probability that infrequent customers will
endeavor to reach an accorded support at the selfsame beat.

● Several data resources that are created possible and sustained in shared methods have
a huge inherent advantage to their users. Their salvation is, therefore, of significant
interest.

What are the different types of distributed computing?
Distributed computing is a multifaceted field with infrastructures that can vary widely. It is thus
nearly impossible to define all types of distributed computing. However, this field of computer
science is commonly divided into three subfields:

● cloud computing
● grid computing
● cluster computing

Cloud Computing uses distributed computing to provide customers with highly scalable
cost-effective infrastructures and platforms. Cloud providers usually offer their resources
through hosted services that can be used over the internet. A number of different service
models have established themselves on the market:

Compiled By Diwas Pandey
11

https://aihubprojects.com/

● Software as a service (SaaS): In the case of SaaS, the customer uses the cloud
provider’s applications and associated infrastructure (e.g. servers, online storage,
computing power). The applications can be accessed with a variety of devices via a thin
client interface (e.g. a browser-based web app). Maintenance and administration of the
outsourced infrastructure is handled by the cloud provider.

● Platform as a service(PaaS): In the case of PaaS, a cloud-based environment is
provided (e.g. for developing web applications). The customer retains control over the
applications provided and can configure customized user settings while the technical
infrastructure for distributed computing is handled by the cloud provider.

● Infrastructure as a service (IaaS): In the case of IaaS, the cloud provider supplies a
technical infrastructure that users can access via public or private networks. The
provided infrastructure may include the following components: servers, computing and
networking resources, communication devices (e.g. routers, switches, and firewalls),
storage space, and systems for archiving and securing data. As for the customer, they
retain control over operating systems and provided applications.

Grid computing is based on the idea of a supercomputer with enormous

computing power. However, computing tasks are performed in many instances rather than just
one. Servers and computers can thus perform different tasks independently of one another. Grid
computing can access resources in a very flexible manner when performing tasks. Normally,
participants will allocate specific resources to an entire project at night when the technical
infrastructure tends to be less heavily used.

One advantage of this is that highly powerful systems can be quickly used and the
computing power can be scaled as needed. There is no need to replace or upgrade an
expensive supercomputer with another pricey one to improve performance.

Since grid computing can create a virtual supercomputer from a cluster of loosely
interconnected computers, it is specialized in solving problems that are particularly
computationally intensive. This method is often used for ambitious scientific projects and
decrypting cryptographic codes.

Cluster computing cannot be clearly differentiated from cloud and grid

computing. It is a more general approach and refers to all the ways in which individual
computers and their computing power can be combined together in clusters. Examples of this
include server clusters, clusters in big data and in cloud environments, database clusters, and
application clusters. Computer networks are also increasingly being used in high-performance
computing which can solve particularly demanding computing problems.

Compiled By Diwas Pandey
12

https://aihubprojects.com/

